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ABOUT OUR INSTITUTE
Solving real-world problems with artificial intelligence (Al)

Research Team

What defines
our research

Information

We solve
management
problems of
relevance by using
data science

Innovation

We develop new
algorithms from the
area of Al

(statistics, computer
science, etc.)

Impact

We evaluate the
added value of our
tools rigorously in
management
practice




OUR RESEARCH
We seek to publish in leading outlets from both artificial intelligence and domain applications

Artificial intelligence { Application domains

N\ r
= Thought leadership in applied Al ensures = Contributes to research that is relevant
research thatis rigorous = Demonstrates impact in practice
* Provides state-of-the-art performance
Example outlets Example outlets
= NeurlPS, ICML, ICLR, ... * Nature Medicine
= KDD = Lancet Digital Health
= ML4H, MLHC, CHIL * Nature Sustainability
= Nature Human Behaviour
= PNAS
Research collaborations nag;s HARVARD Berkeley Cornegie m
EJ IEXAS MEDICAL SCHOOL UNIVERSITY OF CALIFORNIA [:;“‘:-IIL“\

Institute of Al in Management, Prof. Stefan Feuerriegel




VISION
Promises of Causal ML

Estimating treatment effects for vulnerable groups

Augmenting evidence
from RCTs

Finding optimal
dosages

ML for

treatment effect
estimation

Guiding treatment choice when a
standard of care is absent

Estimating post-approval
efficacy, including side effects

Estimating treatment effects
for long-term outcomes

Designing treatment
recommendations for rare diseases
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Why do we need
Causal ML Iin medicine?

Referen
Feuerrie
Schaar,

, S., Frauen, D., Melnychuk, V., Schweisthal, J., Hess, K., Curth, A., Bauer, S., Kilbe N <
2024. Causal machine learning for predicting treatment outcomes. Nature Medicine, 30(4

hane, I.S. and van der
Pp.958-968.
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TERMINOLOGY

Moving from diagnostics to therapeutics: Estimating treatment effects with ML

Traditional ML
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Estimated Average Treatment Effect of Psychiatric
Hospitalization in Patients With Suicidal Behaviors
A Precision Treatment Analysis

Eric L. Ross, I"u'1D1; Robert M. Bossarte, F‘th; Steven K. Dobscha, MD3; et al

& Author Affiliations | Article Information

JAMA Psychiatry. 2024;81(2):135-143. doi:10.1001/jamapsychiatry.2023.3994

Key Points

Question Can development of an individualized treatment rule identify patients presenting to emergency

departments/urgent care with suicidal ideation or suicide attempts who are likely to benefit from psychiatric hospitalization:

Findings A decision analytic model found that hospitalization was associated with reduced suicide attempt risk among pa-
tients who attempted suicide in the past day but not among others with suicidality. Accounting for heterogeneity, suicide at-
tempt risk was found to increase with hospitalization in 24% of patients and decrease in 28%.

Meaning Results of this study suggest that implementing an individualized treatment rule could identify many additional

patients who may benefit from or be harmed by hospitalization.



TERMINOLOGY
Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

The US Food and Drug Administration (FDA) defines 12:3;

= Data relating to patient health status and the delivery of healthcare

Real-world data = Examples: electronic health records (EHRS), claims and billing activities,
(RWD) disease registries, ...

= Naming: observational data (# experimental data)

= Analysis of RWD regarding usage and effectiveness

Real-world evidence Vision: ¢ lizat ¢
(RWE) ision: greater personalization of care

= Disclaimer: should not replace but augment RCTs

1) Real-World Evidence — Where Are We Now? https://www.nejm.org/doi/full/10.1056/NEJMp2200089
2) Real-World Evidence — What Is It and What Can It Tell Us? https://www.nejm.org/doi/full/10.1056/nejmsb1609216
3) Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness https://jamanetwork.com/journals/jama/fullarticle/2697359
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TERMINOLOGY
Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

The US Food and Drug Administration (FDA) defines 12:3;

= Data relating to patient health status and the delivery of healthcare

Real-world data = Examples: electronic health records (EHRS), claims and billing activities,
(RWD) disease registries, ...

Naming: observational data (# experimental data)
= Aim: estimate treatment effectiveness
= Challenges: representativeness (selection bias), no proper randomization, ...
= Custom methodologies: target trial emulation, causal machine learning, ...

= Analysis of RWD regarding usage and effectiveness

Real-world evidence Vision: ¢ lizat ¢
(RWE) ision: greater personalization of care

= Disclaimer: should not replace but augment RCTs

1) Real-World Evidence — Where Are We Now? https://www.nejm.org/doi/full/10.1056/NEJMp2200089
2) Real-World Evidence — What Is It and What Can It Tell Us? https://www.nejm.org/doi/full/10.1056/nejmsb1609216
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VISION

Application scenarios of RWD

RWD helps to guide decision-making (beyond RCTSs):

in the absence of a standard of care

= Specific subtypes of diseases with no standard of care yet (e.g., oncology)

= New or experimental drugs (e.g., orphan drugs, is Biontech vs. Moderna vaccine more
effective for subcohort X?)

in complex, high-dimensional decision problems

= Complex dosaging problems (e.g., chemotherapy, combi-treatments)

.. when RCTs are unethical

= Vulnerable populations (pregnant women, children, severely ill, etc.) *

when a greater personalization is desired

= Highly granular subpopulations that cannot be really placed in RCTs (e.g., women, above
60, with comorbidity X, Y & Z or generally specific patient trajectories)
— maybe a subpopulations responds different for a specific drug, or a second line of
treatment is more effective than the first line?

= Personalization based on genome data (e.g., precision medicine)

1) The Effectiveness of Right Heart Catheterization in the Initial Care of Critically Il Patients https://jamanetwork.com/journals/jama/article-abstract/407990

10
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EXAMPLE
Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a meaningful RWE challenging?

= Observational data of & ,
Real-world data O sunscreen usage (binary treatment) 6:‘_,_. _—

o

(RWD) o number of drowning-related deaths ""
(outcome)
o = Aim: effect of sunscreen on the chance of drowning
7
oxX

_ = Evidence: The higher the usage of sunscreen -> the more likely is the
Real-world evidence chance of drowning

(RWE)

= This is counterintuitive: Is there something we didn’t account for?

11



EXAMPLE
Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a meaningful RWE challenging?

Observational data of

Real-world data o sunscreen usage (binary treatment) . / \

(RWD) o number of drowning-related deaths :
(outcome)

o intensity of sunlight (covariates)

o

o = Aim: effect of sunscreen on the chance of drowning for different intensities of
xx sunlight
ox*

= Evidence: no association between sunscreen usage and chance of drowning
in each group of sunlight
Comparing with the previous slide: Intensity of sunlight is a confounder

Real-world evidence

(RWE)

12



A tailored prediction method is needed to address selection bias

Predict probability of winning: 0.76
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AIM
Understanding heterogeneity in the treatment effect

A
= Focus is often on average treatment effect (ATE) E
-'qc-)' Individualized
_ _ el treatment effect
= ATE is aggregated across the population E
= ATE cannot tell whether a treatment works for "L less effective
some or not than average

— €.g., medication works only for women but not
for men, but RCT was done with all patients

more effective
than average

= NB: both RCTs and target trial emulation focus on
ATEs

Age

To personalize treatment recommendations, we need to understand the individualized treatment effect (ITE)

14



Illustrative

AIM
Why we need to go beyond the ATE and understand heterogeneity in the treatment effect

= All plots show the same average treatment effect (ATE)
= BUT: the medication is only effective some subpopulations
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https://statmodeling.stat.columbia.edu/2023/02/24/causal-guartets-different-ways-to-attain-the-same-average-treatment-effect/ 15
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Short introduction
to causal machine learning
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PRIMER
Estimating the potential outcomes of treatments

= Given i.i.d. observational dataset D = {33270"&» Yigi=1 P(Xa A, Y)
@' covariates _ Covariates Treatment Outcome
@, (binary) treatments ratient @ @ (v)=v0) (v)=Y(Q)
Y‘) Contmuous (factual) outcomes ,,,,,,, gl— _ ,,,,,, _l ............. 0 ........... —10 ...................................
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _1 —,
2 = e DL Vs W 23
Problem - We Want to Identlfy & estlmate .............. . ...................................
formulation freatment outcomes:
o treatment effects
Y[1] - Y[0] : :
o potential outcames Patienté Covariates Potential Eoutcomes Treatment effect
(separately) Y[0] Y1 L ® v vo  yo-ve)
?7 i 7 ?
. | I_I ,,,,,,,,,,, ) ,,,,,,,,,,, )? ........................
Fundamental problem: o'—l_ll ,,,,,,,,,,,, SRS SRS S ——

never observing both potential
outcomes!




PRIMER
Ladder of causation

Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell me
P(y|z) How would seeing X about a disease?
change my belief inY? What does a survey tell us
about the election results?
Pearl’s 2. Intervention Doing What if? What if I take aspirin, will my
layers of P(y|do(x), z) Intervening What if I do X? headache be cured?
causation What if we ban cigarettes?

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher
layer. For the inference from lower layer data, we need to make additional assumptions.

1 Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507-556.



PRIMER
Ladder of causation

Level Typ.ic.al Typical Questions Examples Traditional ML
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell me
P(y|z) How would seeing X about a disease?
change my belief inY? What does a survey tell us
about the election results?
Pearl’s 2. Intervention DOoIng what if? What if T take aspirin, will my
layers of P(y|do(x), z) Intervening What if I do X? headache be cured?
causation What if we ban cigarettes?

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher
layer. For the inference from lower layer data, we need to make additional assumptions.

1 Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507-556.



PRIMER
Ladder of causation

Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell me
P(y|z) How would seeing X about a disease?
change my belief inY'? What does a s
i bout_the eloct] Causal ML
Pearl’s 2. Intervention Doing What if? What if I take aspirin, will my
layers of P(y|do(x), z) Intervening What if I do X? headache be cured?
causation What if we ban cigarettes?

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher
layer. For the inference from lower layer data, we need to make additional assumptions.

1 Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507-556.



PRIMER

Causal ML Workflow

[Define a research question & collect data QJ

/ (

4 Potental outcome DY
Define a causal quantity of interest a\\_v li \ \
< Patert characterstic )
v 1
( 9 2
Define a causal graph
[ grap o‘e )
v 1
'a =\
Assess plausibility of assumptions [z
- >4

y ]
'S N !
- , : s | !
S | Choose & fit treatment effect predictor }Q E
3 1 4
@ e
8 Perform checks | E
\< J
/
[Interpret the results lll J
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PRIMER

Causal ML Workflow

{Define a research question & collect data Q}

Problem setup

/ (

Ve

Potential oubcome T\
Define a causal quantity of interest a\o li\ \\
< Patert characterstic )
v 1
s ®) R
Define a causal graph
[ grap o‘@ |
v 1
e - R
Assess plausibility of assumptions @f’gmmm
S J

’ -
Choose & fit treatment effect predictor }Q

—
=
S ]
-
(4]
(&

Perform checks

, s

[Interpret the results
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PROBLEM SETUP
Causal quantities of interest

averaged effects Effect heterogeneity individualized effects
veament | | - = E(¥[1] - Y[o])| | (=) =E(¥[]-Y[0] |z) | 1~
effect average treatment effect (ATE) conditional average treatment effect (CATE)
potential m—
(counterfactual) [ Mg = E(Y[a]) ] W """" [ pa() = E(Y[ﬂ*] | 3:) ]
outcomes average potential outcome (APQ) [ Fanent charmctenatc conditional average potential outcome (CAPO)




PROBLEM SETUP
Example of a case study

Aim: estimate heterogeneous treatment effect of development aid on SDG outcomes

- Treatment A: development aid earmarked to end the HIV/AIDS epidemic
- Outcome Y: relative reduction in HIV infection rate
- Covariates X: control for differences in country characteristics

Causal graph Causal guantity of interest

Consistency: Y =Y (a)if A=a

[ )U,”_(SU) — E(Y[CL] | Qg) ] Positivity: 0 < p(A=a | X =)< 1,Vae A

conditional average potential outcome (CAPO)

Ignorability: Y(a) 1L A | X =z ,Va € A

30



PRIMER

Causal ML Workflow

{Define a research question & collect data Q}

/

------------------------

. —
. g_ Define a causal quantity of interest a\o l:\\\ :
2\ = |
! g 2 v t B -
. £ | Define a causal graph N :
20 o &—0 J
. O v 1 :
1 i ( — N
E Assess plausibility of assumptions @f’gmwm ;
1 ]

Causal ML

/

-

Choose & fit treatment effect predictor

) 1

-

Perform checks

\

Y

[Interpret the results
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CAUSAL ML

Challenges and open questions fitting an ML model

Challenges

Open
problems

| 1ta(2) =E(Y[d] | ) |

conditional average potential outcome (CAPO)

Selection bias: some subpopulations are
rarely treated

[ 7(z) = E(v[1] - Y[0] | ) ]

conditional average treatment effect (CATE)

Selection bias: some subpopulations are
rarely treated

>

Body mass index (<)

Training data




CAUSAL ML

Challenges and open questions fitting an ML model

| 1ta(2) =E(Y[d] | ) |

conditional average potential outcome (CAPO)

= Selection bias: some subpopulations are
rarely treated

Challenges

[ 7(z) = E(v[1] - Y[0] | ) ]

conditional average treatment effect (CATE)

= Selection bias: some subpopulations are
rarely treated

= Fundamental problem: never observing a
difference of potential outcomes

Open
problems

>

Body mass index @

Training data

o-%X

-Q
?
?




CAUSAL ML
Challenges and open questions fitting an ML model

| 1ta(2) =E(Y[d] | ) |

Training data

conditional average potential outcome (CAPO) A_
©
= Selection bias: some subpopulations are <
rarely treated Q|
©
£
0|
Challenges %
[ 7(z) = E(v[1] - Y[0] | ) ] :
conditional average treatment effect (CATE) % T
o,
: . : M
= Selection bias: some subpopulations are
rarely treated

= Fundamental problem: never observing a
difference of potential outcomes

= How to effectively address selection bias?

Oé)len = How to incorporate inductive biases, e.g.,
plrglliens regularize CAPO / CATE models?




CAUSAL ML

Methods

- Meta-learners (Kunzel 2019) are model-agnostic methods for CATE estimation
- Can be used for treatment effect estimation in combination with an arbitrary ML model of
choice (e.g., a decision tree, a neural network)

Meta-
learners

Model-specific methods make adjustments to existing ML models to address statistical
challenges arising in treatment effect estimation
Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018,

Athey 2019)
Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

Model-based
learners

1. Klinzel, Séren R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.

2. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects.” Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.

3. Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application.” Observational studies 5.2 (2019): 37-51.

4. Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.

5. Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019). 36



CAUSAL ML

Methods

“Plug-in learners”: fit a single regression model with a treatment as an input

Olne'Stage or two regression models for each treated and control sub-groups
earners

Examples: S-learner and T-learner
Meta-
learners - Two-stages of learning: derive and estimate pseudo-outcomes as
Two-stage surrogates, which has the same expected value as the CATE
learners - Examples: DR-learner and R-learner

Model-specific methods make adjustments to existing ML models to address statistical
challenges arising in treatment effect estimation

Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018,
Athey 2019)

Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

Model-based

learners

1. Klinzel, Séren R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.

2. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects.” Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.

3. Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application.” Observational studies 5.2 (2019): 37-51.

4. Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.

5. Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019). 37



CAUSAL ML

Methods

“Plug-in learners”: fit a single regression model with a treatment as an input

Olne'Stage or two regression models for each treated and control sub-groups
earners

Examples: S-learner and T-learner
Meta-
learners - Two-stages of learning: derive and estimate pseudo-outcomes as
Two-stage surrogates, which has the same expected value as the CATE
learners - Examples: DR-learner and R-learner

Model-specific methods make adjustments to existing ML models to address statistical
challenges arising in treatment effect estimation

Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018,
Athey 2019)

Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

Model-based

learners

1. Klinzel, Séren R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.

2. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects.” Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.

3. Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application.” Observational studies 5.2 (2019): 37-51.

4. Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.

5. Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019). 38



CAUSAL ML
Challenges and open questions fitting an ML model

| 1ta(2) =E(Y[d] | ) |

conditional average potential outcome (CAPO) A_
&
x
o
©
£
)
Challenges % B
[ 7(z) = E(v[1] - Y[0] | ) ] :
conditional average treatment effect (CATE) % B
O
an)

Training data

Open
problems




CAUSAL ML
Comparison of meta-learners

Plug-in learners Two-step learners

S-learner T-learner RA-learner IPW-learner DR-learner R-learner

' '

-0 0 O O ® @
b. Need to regularize CATE predictor? —Yes—> ° ° @ 0 6 @
. vy

c. Strong overlap violations (e.g., patients | yes e e e 0 0 e
with certain covariates are never treated)?

d. Propensity score is known (e.g., RCT) or |__ves 5 (— — e 0 0 @
easy to estimate?

A A

e. Interpretability through a single model for | yee 5 e @ ° °
predicting CATE and potential outcomes? ﬂ TT

Beneficial for relative Has no influence on Detrimental for .
. . Not available
performance relative performance relative performance
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