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ABOUT OUR INSTITUTE

Solving real-world problems with artificial intelligence (AI)

PhD Assistant professor
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What defines 

our research

Information

We solve 

management 

problems of 

relevance by using 

data science

1 Impact

We evaluate the 

added value of our 

tools rigorously in 

management 

practice

3Innovation

We develop new

algorithms from the 

area of AI 

(statistics, computer 

science, etc.)
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Institute of AI in Management, Prof. Stefan Feuerriegel

OUR RESEARCH

We seek to publish in leading outlets from both artificial intelligence and domain applications

Artificial intelligence Application domains

▪ Thought leadership in applied AI ensures 

research that is rigorous

▪ Provides state-of-the-art performance 

Example outlets

▪ NeurIPS, ICML, ICLR, …

▪ KDD

▪ ML4H, MLHC, CHIL

▪ Contributes to research that is relevant

▪ Demonstrates impact in practice

Example outlets

▪ Nature Medicine

▪ Lancet Digital Health

▪ Nature Sustainability

▪ Nature Human Behaviour

▪ PNAS

Research collaborations
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VISION

Promises of Causal ML



Why do we need 

Causal ML in medicine?

Reference:

Feuerriegel, S., Frauen, D., Melnychuk, V., Schweisthal, J., Hess, K., Curth, A., Bauer, S., Kilbertus, N., Kohane, I.S. and van der 

Schaar, M., 2024. Causal machine learning for predicting treatment outcomes. Nature Medicine, 30(4), pp.958-968.
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TERMINOLOGY

Moving from diagnostics to therapeutics: Estimating treatment effects with ML
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1) Real-World Evidence — Where Are We Now? https://www.nejm.org/doi/full/10.1056/NEJMp2200089

2) Real-World Evidence — What Is It and What Can It Tell Us? https://www.nejm.org/doi/full/10.1056/nejmsb1609216

3) Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness https://jamanetwork.com/journals/jama/fullarticle/2697359

TERMINOLOGY

Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

The US Food and Drug Administration (FDA) defines 1,2,3:

Real-world data

(RWD)

Real-world evidence 

(RWE)

▪ Data relating to patient health status and the delivery of healthcare

▪ Examples: electronic health records (EHRs), claims and billing activities, 

disease registries, …

▪ Naming: observational data (≠ experimental data)

▪ Analysis of RWD regarding usage and effectiveness

▪ Vision: greater personalization of care

▪ Disclaimer: should not replace but augment RCTs

8

▪ Aim: estimate treatment effectiveness

▪ Challenges: representativeness (selection bias), no proper randomization, …

▪ Custom methodologies: target trial emulation, causal machine learning, …

https://www.nejm.org/doi/full/10.1056/NEJMp2200089
https://www.nejm.org/doi/full/10.1056/nejmsb1609216
https://jamanetwork.com/journals/jama/fullarticle/2697359
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Application scenarios of RWD

VISION

1 … in the absence of a standard of care 

3 … when RCTs are unethical

▪ Specific subtypes of diseases with no standard of care yet (e.g., oncology)

▪ New or experimental drugs (e.g., orphan drugs, is Biontech vs. Moderna vaccine more 

effective for subcohort X?) 

2 … in complex, high-dimensional decision problems

▪ Complex dosaging problems (e.g., chemotherapy, combi-treatments)

▪ Vulnerable populations (pregnant women, children, severely ill, etc.) 1

RWD helps to guide decision-making (beyond RCTs): 

4 … when a greater personalization is desired 

▪ Highly granular subpopulations that cannot be really placed in RCTs (e.g., women, above 

60, with comorbidity X, Y & Z or generally specific patient trajectories) 

→ maybe a subpopulations responds different for a specific drug, or a second line of 

treatment is more effective than the first line? 

▪ Personalization based on genome data (e.g., precision medicine)

1) The Effectiveness of Right Heart Catheterization in the Initial Care of Critically III Patients https://jamanetwork.com/journals/jama/article-abstract/407990

https://jamanetwork.com/journals/jama/article-abstract/407990


EXAMPLE

Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a meaningful RWE challenging?

Real-world data

(RWD)

Real-world evidence 

(RWE)

▪ Observational data of

○ sunscreen usage (binary treatment)

○ number of drowning-related deaths 

(outcome)

▪ Evidence: The higher the usage of sunscreen -> the more likely is the 

chance of drowning

▪ This is counterintuitive: Is there something we didn’t account for?

11

▪ Aim: effect of sunscreen on the chance of drowning

?



EXAMPLE

Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a meaningful RWE challenging?

Real-world data

(RWD)

Real-world evidence 

(RWE)

▪ Observational data of

○ sunscreen usage (binary treatment)

○ number of drowning-related deaths 

(outcome)

○ intensity of sunlight (covariates)

▪ Evidence: no association between sunscreen usage and chance of drowning 

in each group of sunlight

▪ Comparing with the previous slide: Intensity of sunlight is a confounder

12

▪ Aim: effect of sunscreen on the chance of drowning for different intensities of 

sunlight

?



13

A tailored prediction method is needed to address selection bias

Predict probability of winning: 0.76          Rich countries also get more aid  0.35



AIM

Understanding heterogeneity in the treatment effect

14

▪ Focus is often on average treatment effect (ATE)

▪ ATE is aggregated across the population 

▪ ATE cannot tell whether a treatment works for 

some or not 

→ e.g., medication works only for women but not 

for men, but RCT was done with all patients 

▪ NB: both RCTs and target trial emulation focus on 

ATEs

To personalize treatment recommendations, we need to understand the individualized treatment effect (ITE)



https://statmodeling.stat.columbia.edu/2023/02/24/causal-quartets-different-ways-to-attain-the-same-average-treatment-effect/

AIM

Why we need to go beyond the ATE and understand heterogeneity in the treatment effect
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▪ All plots show the same average treatment effect (ATE)

▪ BUT: the medication is only effective some subpopulations 
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Illustrative

https://statmodeling.stat.columbia.edu/2023/02/24/causal-quartets-different-ways-to-attain-the-same-average-treatment-effect/


Short introduction 

to causal machine learning

Reference:

Feuerriegel, S., Frauen, D., Melnychuk, V., Schweisthal, J., Hess, K., Curth, A., Bauer, S., Kilbertus, N., Kohane, I.S. and van der 

Schaar, M., 2024. Causal machine learning for predicting treatment outcomes. Nature Medicine, 30(4), pp.958-968.



Problem 

formulation
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PRIMER

Estimating the potential outcomes of treatments

▪ Given i.i.d. observational dataset

○ covariates

○ (binary) treatments 

○ continuous (factual) outcomes 

▪ We want to identify & estimate 

treatment outcomes: 

○ treatment effects

○ potential outcomes 

(separately)

▪ Fundamental problem:

never observing both potential

outcomes!

Problem 

formulation
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PRIMER

Ladder of causation  

1 Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507–556.

1

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher 

layer. For the inference from lower layer data, we need to make additional assumptions.

Pearl’s 

layers of 

causation
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PRIMER

Ladder of causation  

Pearl’s 

layers of 

causation

1 Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507–556.

1

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher 

layer. For the inference from lower layer data, we need to make additional assumptions. 

Traditional ML

Pearl’s 

layers of 

causation
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PRIMER

Ladder of causation  

Pearl’s 

layers of 

causation

1 Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507–556.

1

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher 

layer. For the inference from lower layer data, we need to make additional assumptions.

Causal ML

Pearl’s 

layers of 

causation



22

PRIMER

Causal ML Workflow



23

PRIMER

Causal ML Workflow
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PROBLEM SETUP

Causal quantities of interest
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Aim: estimate heterogeneous treatment effect of development aid on SDG outcomes

▪ Treatment A: development aid earmarked to end the HIV/AIDS epidemic

▪ Outcome Y: relative reduction in HIV infection rate

▪ Covariates X: control for differences in country characteristics

Causal graph Causal quantity of interest Assumptions

PROBLEM SETUP

Example of a case study



32

PRIMER

Causal ML Workflow



CAUSAL ML

Challenges and open questions fitting an ML model

Challenges

▪ Selection bias: some subpopulations are

rarely treated

▪ Selection bias: some subpopulations are

rarely treated

Open 

problems
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CAUSAL ML

Challenges and open questions fitting an ML model

Challenges

▪ Selection bias: some subpopulations are

rarely treated

▪ Selection bias: some subpopulations are

rarely treated

▪ Fundamental problem: never observing a 

difference of potential outcomes

Open 

problems

▪ How to effectively address selection bias? 

▪ How to incorporate inductive biases, e.g., 

regularize CAPO / CATE models?
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1. Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.

2. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.

3. Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application." Observational studies 5.2 (2019): 37-51.

4. Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.

5. Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019).

Meta-

learners

Model-based 

learners

▪ Model-specific methods make adjustments to existing ML models to address statistical 

challenges arising in treatment effect estimation

▪ Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, 

Athey 2019)

▪ Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

▪ Meta-learners (Kunzel 2019) are model-agnostic methods for CATE estimation 

▪ Can be used for treatment effect estimation in combination with an arbitrary ML model of 

choice (e.g., a decision tree, a neural network)

CAUSAL ML

Methods
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learners
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challenges arising in treatment effect estimation

▪ Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, 

Athey 2019)

▪ Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

CAUSAL ML

Methods

One-stage 

learners

Two-stage 

learners

▪ “Plug-in learners”: fit a single regression model with a treatment as an input 

or two regression models for each treated and control sub-groups 

▪ Examples: S-learner and T-learner

▪ Two-stages of learning: derive and estimate pseudo-outcomes as 

surrogates, which has the same expected value as the CATE

▪ Examples: DR-learner and R-learner
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CAUSAL ML

Challenges and open questions fitting an ML model

Challenges

Open 

problems
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CAUSAL ML

Comparison of meta-learners
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