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e Fundamental problem of causal inference

e Spectrum of causal estimands
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Introduction: Causal Machine Learning

Ambiguity of the definition. “Causal Machine Learning” is both:
e causal inference used for machine learning

Causal inference concepts ML / DL problems

- Explainability

- Fairness

- Algorithmic recourse

- Robustness / domain adaptation

e machine learning used for causal inference

Causal inference problems M‘—/ DL t°f_|s

Treatment effect estimation
Counterfactual inference

Causal discovery b
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Introduction: Causal Machine Learning

Ambiguity of the definition. “Causal Machine Learning” is both:
e causal inference used for machine learning

Causal inference concepts ML / DL problems

- Explainability

- Fairness

- Algorithmic recourse

- Robustness / domain adaptation

e machine learning used for causal inference

] ML / DL tools
Causal inference problems o -
|%reatment effect estimation
ounterfactual inference

Causal discovery b
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Introduction: Treatment effect estimation from observational data

e Treatment effect estimation is one of the main causal inference problems
Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell me
P(y|z) How would seeing X about a disease?
change my belief inY? What does a survey tell us
abeut-the-eleetion—resulte?
2. Intervention Doing What if? What if I take aspirin, will my
P(y|do(x), 2) Intervening What if I do X? headache be cured?
What if we ban cigarettes?
3. Counterfactuals Imagining, Why? Was it the aspirin that
Py |#" %) Retrospection Was it X that caused Y7 stopped my headache?
What if I had acted Would Kennedy be alive had
differently? Oswald not shot him?
What if I had not been smok-
ing the past 2 years?
e Gold standard, Randomized controlled trials (RCTs), are expensive / unethical
e Abundance of the observational data
e Recent advances in ML/DL provide many tools
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Introduction: Problem formulation

e Giveni.i.d. observational dataset D = {X;, A;,Y;}i; ~P(X,A,Y)

. Covariates Treatment - Outcome
| Patient @ @ Y _y (O) Y —Y(1)
@ covariates USRS SOOI~ SRR SO - ASUNE . = AN . = SN
@ (binary) treatments I s et I Wt = S VA I
(v) continuous (factual) outcomes @ == 1 : 53
2 : 1 03

................................................................................................................................................................

e \We want to predict: . Covariates | Potential outcomes | Treatment effect
o treatment effects Y[1] — Y0 Patient : @ Y(0) | Y(1) Y(1) — Y(0)
o counterfactual (potential) T T _A—— 9 ........... ‘? ..................................................
outcomes Yo v o .. Q’_'_:' ............ 0 T N S
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Introduction: Fundamental problem of causal inference

Both potential outcomes (factual and counterfactual) are

never observed for any individual -> treatment effects are never observed

Potential outcomes are only observed for parts of the population -> selection bias

Patient

..............................

Covariates éTreatment ) Outcome

...............................

............................

| 0 —1.0
— 1 2.3
=l 1 0.3

................................................................................................................................................................



LMU MUNICH SCHOOL OF MANAGEMENT

Introduction: Fundamental problem of causal inference

Both potential outcomes (factual and counterfactual) are

never observed for any individual -> treatment effects are never observed

Potential outcomes are only observed for parts of the population -> selection bias

Patient

..............................

Covariates : Treatment :

...............................

............................

| 0
— 1
E=EE 1

........................................................................................

P Outcom_e_
@)=x0) (¥=x)

..........................................................................................................................

.....................................................................

......................................................................

......................................................................
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Introduction: Spectrum of causal estimands

Conditioning on

averaged effects

. S G

Effect heterogeneity

Treatment effect

individualized effects

Treatment effect

treatment average treatment effect (ATE) conditional average treatment effect (CATE) )
effect T =E[Y(1) — Y(0)] . E[Y(1) -Y(0) |V =1 y
| Patient characterls;c | Patient chamcleris;c
potential average potential outcome (APQ) 4™ *™ conditional average potential outcome (CAPO) 4" (1,2)
(counterfactual) 7(a) = E[Y (a)] [ . 7(v,a) = E[Y(a) | V = ]
|

outcomes

.

Patient characteristic

7(0,z)

I Patient characteristic
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Introduction: Spectrum of causal estimands

Conditioning on

Propensity score
matching = sub-group
CATE / CAPO
¥ 1- X4} V=X X X4 Xp} V=@

averaged effects Effect heterogeneity individualized effects
E— S TEae R ATE) Treatment eflect conditional average treatment effect (CATE) wﬂw\f(z)
effect r=E[Y (1) — Y(0)] . 7(v) =E[Y(1) - Y(0) | V =] '
Patient characte |!;C I Patient characteristic
potential average potential outcome (APQ) 4™ *™ conditional average potential outcome (CAPO) 4" (1,2)
(counterfactual) 7(a) = E[Y(a)] [ m(v,a) =E[Y(a) |V = 1] 0,2)
outcomes | Patient characteri h'C I Patient char: ac‘eﬂsuc

10
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Introduction: Spectrum of causal estimands

Prognostic score =
minimal conditioning set,
which contains all the

Vz@ o {:"fl”le} information about TE / V=@
. Rl . potential outcome Hep

Conditioning on e s ,

averaged effects Effect heterogeneity individualized effects
treatment average treatment effect (ATE) [mmwm conditional average treatment effect (CATE) wm\,.(z)
ot r=E[Y(1) - Y(0)] (v) = E[Y(1) - Y(0) | V = 1] ‘
| Patient chavaﬁerls;c I Patient characteristic
potential average potential outcome (APO) ™™™ conditional average potential outcome (CAPO) A" " _+(1,2)
(counterfactual) 7(a) = E[Y(a)] [ m(v,a) =E[Y(a) |V = 1] (0,2)
| = >

outcomes

Patient characteristic I Patient characteristic

11
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LUDWIG-

This keeps happening. How heavy
are cats”

Causal assumptions

e Frameworks

e Potential outcomes framework (Neyman-Rubin)

e Structural causal model (SCM)
e Causal diagrams

e Equivalence of the frameworks
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Causal assumptions: Philosophy

“The credibility of inference decreases
with the strength of the assumptions maintained.”

Manski, C. F. (2003). Partial identification of probability distributions, volume 5. Springer.

13
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Causal assumptions: Frameworks

D={X;, A, Y;}", ~P(X,AY)

Potential Structural causal model (SCM)
outcomes (Pearl-Bareinboim)
framework

Causal diagram + Positivity

v

(Neyman-Rubin)

Treatment effect Treatment effect

average treatment effect (ATE) conditional average treatment effect (CATE) _
r=E[Y(1) - Y(0)] 7(v) = E[Y(1) — Y(0) | V =]

3>

>

Patient characteristic I Patient characteristic

Potential outcome Potential outcome

average potential outcome (APO) 4 conditional average potential outcome (CAPOQ) 7(1,2)
7(a) = E[Y(a)] 7(v,a) = E[Y(a) | V = 9]

7(0, z)

Patient characteristic I Patient characteristic
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Causal assumptions: Frameworks

D={X;, A4, Y;}", ~P(X,AY)

More general I I =
. _ Potential Structural causal model (SCM)
(i) Consistency outcomes (Pearl-Bareinboim)

(ii) Positivity (Overlap)
(iif) Exchangeability
(Ignorability)

framework
(Neyman-Rubin)

' '

Causal diagram + Positivity

average treatment effect (ATE) e conditional average treatment effect (CATE) P -
r=E[Y(1) - Y(0)] 7(v) = E[Y(1) ~ Y(0) | V =]

>
| Patient characteristic

~

]
- 4
g
Y

Potential outcome Potential outcome

average potential outcome (APO) 4 conditional average potential outcome (CAPQ) 7(1,2)
7(a) = E[Y(a)] 7(v,a) = E[Y(a) | V = 9] /

7(0,z)

>

Patient characteristic | Patient characteristic
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Causal assumptions: Potential outcomes framework (Neyman-Rubin)

e Informal: Potential outcomes are real,
patient-individual, and (sometimes) observed

o If A=a isatreatmentfor some patient, then
Y =Y|q]

(i) Consistency

e Informal: Both treatments are assigned randomly enough
(ii) Overlap / e There is always a non-zero probability of receiving/not
Positivity receiving any treatment, conditioning on the covariates:
€e>0,Pl—-—e>m(X)>¢) =1

e Informal: Confounding issue is resolved, if we
condition on enough covariates
Current treatment is independent of the potential
outcome, conditioning on the covariates:

A 1 Y[a] | X for all a.

(iii) Ignorability /
Unconfoundedness /
Exchangeability

16
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Causal assumptions: Potential outcomes framework (Neyman-Rubin)

Verifiable with infinite

e Informal: Potential outcomes are real, observational data?
(i) Consistency patient-individual, and (sometimes) observed
e If A=a isatreatment for some patient, then
Y = Y]d] X

e Informal: Both treatments are assigned randomly enough
(i) Overlap / e There is always a non-zero probability of receiving/not \
Positivity receiving any treatment, conditioning on the covariates: (but curse of

€>0.P(l-e2m(X)2¢) =1 dimensionality kicks in)

(iii) Ignorability /
Unconfoundedness /
Exchangeability

condition on enough covariates
Current treatment is independent of the potential
outcome, conditioning on the covariates:

A 1 Ya] | X forall a.

e Informal: Confounding issue is resolved, if we x

(but we can speculate
about plausibility with
sensitivity models)

17
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Causal assumptions: Potential outcomes framework (Neyman-Rubin)

Given Assumptions (i) - (iii), causal quantities are identifiable from observational data via

e back-door (regression) adjustment (RA)

©)
©)

©)

Identifiability ©

CATE 7@ =EIY() - Y(0) | X=a] =E[Y | A= 1,X =a] ~EY | A=0,X = 1] = r(s) o)
ATE  T=E[EY|A=1X]-E[Y|A=0,X]] =E[s(X) - po(X)]
CAPO T(z,0) =E[Y(a) | X =2| =E[Y | A=a,X = z] = po(x)

APO 7(a) =E[E[Y | a, X]| = E[pq(X)]

with potential e inverse propensity weighting (IPW):

outcomes
framework

CATE T7(z) = E[(—m‘&) - T )YIX = w]
— A 1-A
ATE = [( m(X)  1-m(X) )Y

1(A=a
capo (a0) —E| Lay|x —

1(A=a
apo  T(a) =E [ﬁY]

18
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Causal assumptions: Potential outcomes framework (Neyman-Rubin)

Choosing
covariates

According to econometricians: All the pre-treatment
covariates are fine.

o ground-truth confounders (A <- X ->Y)

o instruments (A <- X)

o background noise (X/ X ->Y) _
Due to the curse of dimensionality problem becomes TN S

harder to estimate Post-treatment covariate

adjustment

When adjusting for a post-treatment covariate, we induce
bias -> kitty dies

19



Causal assumptions: Frameworks

D={X;, A4, Y;}", ~P(X,AY)

Potential
outcomes
framework
(Neyman-Rubin)

average treatment effect (ATE)
T=E[Y(1) - Y(0)]

Treatment effect

3>

Patient characteristic

LMU MUNICH SCHOOL OF MANAGEMENT

Assumptions can be
related to the structural
knowledge

Structural causal model (SCM)
(Pearl-Bareinboim)

Causal diagram + Positivity

'

7(v) =E[Y(1) —=Y(0) | V =]

conditional average treatment effect (CATE) W)

Treatment effect

| Patient characteristic

average potential outcome (APO)
7(a) = E[Y(a)]

A

Potential outcome

Patient characteristic

conditional average potential outcome (CAPO) 7(1,z)
7(v,a) = E[Y(a) | V = 9]

Potential outcome

7(0, z)

l Patient characteristic

20
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Causal assumptions: Structural causal model (SCM)

e Informal: Assuming a SCM = knowing the full nature of Verifiable_with infinite
the data generating process observational data?
e SCM = {observed variables, hidden variables, functional
assignments for every observed covariate, probability
distribution for hidden variables}
SCM
_ (nobserved Nature)
Unobserved | { X« fo(U) i
Causal ‘ |
: : ¥ fY(X’ Uy) '
SCM Mechanisms | | L3 Counterfactual
: P(UX’U}’) |
—————————————— | L, Interventional
v / l \
Observed P(X,Y)| |P(Y|do(X))||P(Y:|x',y) : ;
Phenomena Ly Ly Ls

e Allthe L1, L2, L3 queries can inferred with the probability
calculus, including, CATE/ATE and CAPO/APO ->
unnecessary strong assumption

21



Causal assumptions: Causal diagram

e Informal: Causal diagram (Causal DAG, Causal Bayesian
network) encodes structural constraints of an SCM:
conditional dependencies / independencies for L1 and
L2 distributions

e Every SCM induces a causal diagram. Every causal
diagram encompasses a class of SCMs.

Structural Causal Models 'I

(Unobserved) Causal Bayesian Network

Causal diagram

Observational ? Interventional
(L1) Distributions » (L,) Distributions
Data Query

LMU MUNICH SCHOOL OF MANAGEMENT

Verifiable with infinite
observational data?

X

N

(only Markov
equivalence class
IS identifiable, for
Markovian

diagrams)
N
N || [
> |2 [v)7

22



Causal assumptions: Causal diagram

o
Identifiability
with causal
diagrams

o

Query: Causal diagram: ID-:
CATE / R b
CAPO @ v 4‘
CATE / >/<:l - .

CAPO WS—

______

ATE / G —

APO D00 —
W
A N IV

The theory holds, when covariates are high-dimensional (=

LMU MUNICH SCHOOL OF MANAGEMENT

Sound and complete identifiability algorithms (using do-calculus) exist for L2 and L3
causal quantities, e.g.,

Formula:

back-door adjustment
propensity reweighting

back-door adjustment
propensity reweighting

front-door adjustment

napkin formula

clustered causal diagrams)

23
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Causal assumptions: Causal diagram

e Sound and complete identifiability algorithms (using do-calculus) exist for L2 and L3
causal quantities, e.g.,

Query: Causal diagram: ID: Formula:

CATE / BON | .

CAPO ; —> x ( Hidden Confounding)
Identifiability (%)
with causal CATE / 3 1 » Butterflv-bias
diagrams CAPO ' - x ( y )

o

The theory holds, when covariates are high-dimensional (= clustered causal diagrams)

24
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Causal assumptions: Frameworks

D={X;, A, Y;}", ~P(X,AY)

Potential Structural causal model (SCM)
outcomes (Pearl-Bareinboim)
framework B

Causal diagram + Positivity

v

(Neyman-Rubin)

Treatment effect Treatment effect

average treatment effect (ATE) conditional average treatment effect (CATE) _
r=E[Y(1) - Y(0)] 7(v) = E[Y(1) — Y(0) | V =]

3>

>

Patient characteristic I Patient characteristic

Potential outcome Potential outcome

average potential outcome (APO) 4 conditional average potential outcome (CAPOQ) 7(1,2)
7(a) = E[Y(a)] 7(v,a) = E[Y(a) | V = 9]

7(0, z)

Patient characteristic I Patient characteristic
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Causal assumptions: Equivalence of the frameworks

e Assumptions of potential outcomes framework are equivalent to assuming: (i) causal
diagram, to which back-door adjustment can be applied, and (ii) positivity.

(i) Causal diagrams, where:
- back-door adjustment for X should be applied

ﬁv ft/ N ‘ ' (i) Consistency
Equivalence of iA‘*—Hf Ww—\ (i) Ignorability

assumptions : i ifi
umptl - causal effect is already identifiable and

adjustment for X does not create bias

@ ﬁ) (W) —{v
@ > M —{y ‘ @

%.‘&A‘—*Y

(ii) Positivity <_> (ii) Positivity

26
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Causal assumptions: Equivalence of the frameworks

e Almost all pre-treatment covariates are fine except for
(rarely) variables, that can induce M-bias

Choosing e Most of the post-treatment covariate adjustments lead to
covariates the death of a kitty

(revisited)
YT

X (selection bias) X (overcontrol bias)

e See (Cinelli et al. 2022) for details.

(Most of the) post-treatment

covariate adjustments or
M-bias

27
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ML and estimation

Big picture
Plug-in (one-step) learners
Issues of plug-in estimation
1. “What about the sub-group treatment effects?”
o Pseudo-outcomes vs custom residualized loss
o Two-step learners
o Plug-in (one-step) vs two-step learners
. How to regularize tau(x)?
. “What is better, adjustment or IPW?”
. “Can we do data-driven model selection?”
“How to address the selection bias?”
. “Can we incorporate inductive biases for nuisance
functions estimation?”
7. “Can we do end-to-end learning?”

c»_cn.hwm

Nobody:

Me explaining all the causal inference methods:




ML and estimation: Big picture

CATE estimation: estimating a function

Meta-learners: use
any combination
of models

Two-step learners:
Pseudo-outcome
regression:

- |IPW-learner

- RA-learner / X-learner

- DR-learner/ |E-learner

Loss-based:

- R-learner (DML)
- U-learner
- EP-learner

Plug-in
(one-step)
learners:

- S-learner
- T-learner

Model-based:
find the best-in-class
single model by
designing loss
One-step models:
- S-Net/ T-Net
- TARNet
-  FElexTENet
- CFR (RCER)
- DRCFR
- BW-CFR
- Causal Forest

Two-step models:
- GANITE

LMU MUNICH SCHOOL OF MANAGEMENT

ATE / APO estimation:
estimating a parameter

Sample averaging of
pseudo-outcomes:

- IPW estimator

- RA estimator

- A-IPW estimator

Loss-based (TMLE):
- DragonNet

29
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https://arxiv.org/abs/1906.02120

ML and estimation: Big picture

CAPO estimation: estimating a function

Meta-learners: use
any combination
of models

Two-step learners:
Pseudo-outcome
regression:

- |IPW-learner

- RA-learner / X-learner

- DR-learner/ |E-learner

Loss-based:
- IPW-learner
- DR-learner
- I-learner

Plug-in
(one-step)
learners:

- S-learner
- T-learner

Model-based:
find the best-in-class
single model by
designing loss
One-step models:
- S-Net/ T-Net
- TARNet
-  FElexTENet
- CFR (RCER)
- DRCFR
- BW-CFR
- Causal Forest

Two-step models:
- GANITE

LMU MUNICH SCHOOL OF MANAGEMENT

ATE / APO estimation:
estimating a parameter

Sample averaging of
pseudo-outcomes:

Loss-based (TMLE):

- IPW estimator
- RA estimator
-  A-IPW estimator

- DragonNet

30
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https://arxiv.org/abs/2101.10943
https://arxiv.org/abs/2101.10943
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https://arxiv.org/abs/2004.14497
https://arxiv.org/abs/2008.06461
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https://arxiv.org/abs/2311.09423
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https://arxiv.org/abs/1606.03976
https://arxiv.org/abs/2001.07426
https://openreview.net/forum?id=HkxBJT4YvB
https://arxiv.org/abs/2010.12618
https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1319839
https://openreview.net/forum?id=ByKWUeWA-
https://arxiv.org/abs/1906.02120
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ML and estimation: One-step learners

CATE estimation: estimating a function ATE / APO estimation:
estimating a parameter
Meta-learners: use M |
any combination . Sdet -_basl,ed. Sample averaging of
of models Plug-in ndthe le S -In(-jc lats)s [pseudo-outcomes:
(one-step) Singlie model by - IPW estimator
Two-step learners: learners: designing loss - RA estimator
Pseudo.-ou.tcome - S-learner || One-step models: - A-IPW estimator
regression: - T-learner - S-Net/ T-Net
- IPW-learner -  TARNet
- S/F*{-Ileamer§ T<F-I|eamer - FlexTENet Loss-based (TMLE):
- -learner -learner - CFR (RCFR) _ DragonNet
- DRCFR
Loss-based: - BW-CFR
- R-learner (DML) - CEVAE
- U-learner - Causal Forest
- EP-learner Two-step models:
i -  GANITE
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ML and estimation: Plug-in (one-step) learners

e With infinite observational data, we just need to estimate nuisance functions and
o plug-in them for CATE
o take a sample average for ATE

Step 1. Nuisance estimation
i ={fa(z) =E[Y | A=0a,X = 2];74(z) =P[A=a | X = 2]}

Step 2. Post-processing: Plug-in estimation / sample averaging

Plug-in
(one-step) CATE ATE
learners o _ ‘ _ ,
H@) = (@) — ola) | LY AT O - 2o(XD)) + (1 - AD)(aa (X D) — Y D)
T\XL) = Ui\T) — Uo\L ,\ . n A®) 1—A® 5
TIPW — % Zi:l F(X@D)  Fe(X®) viv

A _ 1 A0 1-A0 i A ~ i 1-40 |~ i
FAPW = 7+ D i1 (ﬁl(X(i)) T #(X®) )Y( '+ [(1 B W)Nl(x( )= <1 T F(XO) >“0(X( ))}

e \We can learn nuisance functions either as a joint Single model (S-learner) or as a
Two separate models (T-learner).

32
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ML and estimation: Issues of plug-in estimation

Problem solved? NO!

1. What about the sub-group treatment effects (we still need to adjust for the full X)?
2. How toregularize 7(x) :?

3. What is better, adjustment or IPW? Can we do even better (e.g., more efficient, more

Ez;eisn ?(faarners robust) in estimating CATE / ATE?

In finite-sample 4. Can we do data-driven model selection?

5. flq (w) can only be well estimated for some parts of the population, e.g., only in treated
group. How to address the selection bias?

6. Can we incorporate inductive biases for nuisance functions?

/. Can we do end-to-end learning?

33
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ML and estimation: 1. “What about the sub-group treatment effects?”

e ATE = Sub-group treatment effect with 1/ — ()
e \What if we want to learn arbitrary V C @ ?

e In traditional ML, we would simply do a regression with less features (= minimize MSE):

Sub-group o CATE 5(71) — E((Y[l] - Y[O] - 7A'(V))z
oot ment o CAPO  L(7) = E((Y]d] — #(V,a))’

e But, the fundamental problem of causal inference
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ML and estimation: 1. “What about the sub-group treatment effects?”

e ATE = Sub-group treatment effect with 1/ — ()
e \What if we want to learn arbitrary V C @ ?

e In traditional ML, we would simply do a regression with less features (= minimize MSE):

Sub-group o CATE  L(7)=E([(Y[1] — Y[O]l — ’T'(V))2 never observed
treatment 5 _
effects o CAPO L(T)= E( Yla]|— #(V, a)) sometimes observed

e But, the fundamental problem of causal inference
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ML and estimation: 1. “What about the sub-group treatment effects?”

e ATE = Sub-group treatment effect with 1/ — ()
e \What if we want to learn arbitrary V C @ ?

e In traditional ML, we would simply do a regression with less features (= minimize MSE):

Sub-group o CATE 5(72) — E((Y[l] - Y[O] - 7A'(V))z
oot ment o CAPO  L(7) = E((Y]d] — #(V,a))’

e But, the fundamental problem of causal inference

e Idea: machine learning with the nuisance functions

o CATE L(#,n) = E([r(X) | #(V))”

o CAPO  L(7,m) = E([r(X,a)}- #(V,a))® r(n) = E(=L]y - 2(v,a))’

ma(X)
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ML and estimation: Two-step learners

CATE estimation: estimating a function

Meta-learners: use
any combination
of models

Two-step learners:
Pseudo-outcome

regression:

- IPW-learner
- RA-learner / X-learner
- DR-learner/ IF-learner

Loss-based:

- R-learner (DML)
- U-learner
- EP-learner

Plug-in

(one-step)

learners:
S-learner
T-learner

Model-based:
find the best-in-class
single model by
designing loss
One-step models:
- S-Net/ T-Net
- TARNet
- FlexTENet
- CFR (RCFR)
- DRCFR
- BW-CFR
- CEVAE
- Causal Forest

Two-step models:
- GANITE

LMU MUNICH SCHOOL OF MANAGEMENT

ATE / APO estimation:
estimating a parameter

Sample averaging of
pseudo-outcomes:

Loss-based (TMLE):

- IPW estimator
- RA estimator
-  A-IPW estimator

- DragonNet
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ML and estimation: 1. “What about the sub-group treatment effects?”

CATE ATE
fra = 2 Y0, AO(Y O — fig(XD)) + (1 - AD) (3 (X D) — Y ©)
7 — 1Ly A 1—A0) ;
TV =% 2im1 m(X®) 7y (x®) )Y()

- _ 1 A© 1-AW i AW PN i 1-A® )~ i

7(z) = i (z) — fuo()

Sub-group e ATE = Sub-group treatment effectwith V' =0 (V g@ !
treatment Sample averaging = Regression with intercept only
effects

e Idea 1: create pseudo-outcomes f/ﬁ with the main property IE(Y'77 | V = v) — T(’U)
Yeas =AY — fo(X)) + (1 — A) (A1 (X) - Y)

5 (4 1-4
Yews = | 70 ~ 70 )Y

Fou = (=i — i )+ | (1 i )10 — (1 28y ) )
e We regress on them on V with e.g. L2 loss:  L(7,7) = I[‘E(YN',A7 — #(V))?
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ML and estimation: 1. “What about the sub-group treatment effects?”

CATE ATE
fra = 2 Y0, AD(YO — fo(XD)) + (1 - AD) (g (X D) — Y )

" 1 A®) 1—A®) (i)
TIPW — n Ei:l (ﬁ'l(X(i)) o frO(X(i)) )Y

7(z) = fn(z) — fuo(z)

e Idea 2: use nuisance parameters to design a loss, so that CATE are well estimated, for

Sub-group example with Robinson decomposition:
treatment e
effects Y — p(X) = (A—m(X))7(X) +e(A)

where e(a) = Y(a) — (po(X) + ar(X)), E(e(4A)|A=a,X=2)=0, uX)=EY |X=r2x)

e Then the custom residuals loss is following:

£(3,7) = E((Y (X)) — (A - fn(X))%(w)
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ML and estimation: Pseudo-outcomes vs custom residualized loss

e If we would use ground-truth nuisance parameters, it turns out that the losses aim at the
ground truth CATE or weighted CATE

Nuisance Pseudo-outcome based Loss-based
parameters
X 2
Pseudo- Estimated | L(7,7) = E(Y; —7(V))* @ L(7,7) =E ((Y — (X)) — (A—m (X))%(V))
outcomes vs
custom

residualized
loss Ground-truth ’? ?
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ML and estimation: Pseudo-outcomes vs custom residualized loss

Pseudo-
outcomes vs
custom
residualized
loss

e If we would use ground-truth nuisance parameters, it turns out that the losses aim at the
ground truth CATE or weighted CATE

Nuisance

Pseudo-outcome based Loss-based
parameters

Estimated | L(7,7) = E(Y, —7(V))? @ L(7,7) =E ((Y = ,u(iX)) —(A—m (X))f'(V))

Ground-truth £(7m = LT, n) = ]E(ﬂ'l (X)mo(X) (T(V) - 7A-(V)))
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ML and estimation: Pseudo-outcomes vs custom residualized loss

Pseudo-
outcomes vs
custom
residualized
loss

e If we would use ground-truth nuisance parameters, the losses aim at the ground truth
CATE or weighted CATE

Nuisance

Pseudo-outcome based Loss-based
parameters

Estimated | L(7,7) = E(Y, —7(V))? @ L(7,7) =E ((Y = ,u(iX)) —(A—m (X))f'(V))

Ground-truth £(7m = LT, n) = ]E(ﬂ'l (X)mo(X) (T(V) - 7A-(V)))Z

E((Y(1) - Y(0)) — #(V))?

- Overlap weighted CATE estimation: only focusing on patients, where decision was
uncertain. For many applications this may be more useful than usual CATE

- Minimization of the two losses give different result, if ground-truth CATE is not in the
model class for 7(x) , or when doing sub-group CATE
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ML and estimation: Two-step learners

e Two-step learners, based on pseudo-adjust are, IPW-learner, RA-learner / X-learner,
and doubly-robust (DR)-learner / influence-function (IF-learner)

Step 1. Nuisance estimation
i={ia(z) =EY | A=a,X =z];7.(z) =P[A=0a | X = x|}

Step 2. Post-processing: Regression on pseudo-outcomes

Two-step CATE
learners

Yeas =AY — fo(X)) + (1 — A) (A1 (X) - Y)

% — A 1-A

Yipw,5 = (X))  #o(X) Y

% e A 1_A A A 1_A A
Yorj = (frl(X) - fro<X))Y+ [(1 - W)“l(x) - (1 - %O(X>)“0(X)]

L(#,9) = E(Y; — #(V))*

e Sample splitting needed, if too flexible models are chosen!
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ML and estimation: Two-step learners

e Other alternative is residualized (R)-learner:

Step 1. Nuisance estimation
n={z) =EY | X =z];7.(z) =P[A=0a | X = x|}
Step 2. Post-processing: Minimization of the custom loss

Two-step CATE
learners

L(#7) = E((Y (X)) — (A mX))%(m)

e Sample splitting needed, if too flexible models are chosen!
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(C )

a. Large sample size?

( 2\

b. Need to regularize CATE predictor?

\ =
-

c. Strong overlap violations (e.g., patients

with certain covariates are never treated)?
-

-

d. Propensity score is known (e.g., RCT) or

easy to estimate?
4 7

(A )
e. Interpretability through a single model for

Y &

LMU MUNICH SCHOOL OF MANAGEMENT

ML and estimation: Plug-in (one-step) vs two-step learners

Plug-in learners

Two-step learners

S-learner T-learner

RA-learner |IPW-learner

DR-learner R-learner

3
!
||
||

predicting CATE and potential outcomes?
< J

@ Beneficial for relative @ Has no influence on @
performance relative performance

|
P

Detrimental for
relative performance

® Not available
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ML and estimation: Plug-in (one-step) vs two-step learners

Plug-in learners Two-step learners

S-learner T-learner RA-learner |IPW-learner DR-learner R-learner

(F 2
a. Large sample size? —Yes— [ =— = — - @
J
( O\
b. Need to regularize CATE predictor? —Yes— X) C) CﬂD (ﬂ) @
- 4
i N\
c. Strong overlap violations (e.g., patients | ves 5 ((— — U e
with certain covariates are never treated)?
o 7
|
G 2\
d. Propensity score is known (e.g., RCT) of |__vees 5 [ — ; Can be relaxed with @
easy to estimate? | py propensity-score
.
e ) ¥ clipping
e. Interpretability through a single model for| v ﬂ ﬂ X o X e
predicting CATE and potential outcomes? u v
o >4

Beneficial for relative Has no influence on Detrimental for _
_ , Not available
performance relative performance relative performance



ML and estimation: 2. How to regularize 7(z) : ?

(C )

a. Large sample size?

-

b. Need to regularize CATE predictor?

\ = —4
-

J

c. Strong overlap violations (e.g., patients

with certain covariates are never treated)?
-

-

d. Propensity score is known (e.g., RCT) or

easy to estimate?
4 7

f )
e. Interpretability through a single model for

LMU MUNICH SCHOOL OF MANAGEMENT

Plug-in learners

Two-step learners

S-learner T-learner

RA-learner |IPW-learner

DR-learner R-learner

3
!
||
||

predicting CATE and potential outcomes?
< J

@ Beneficial for relative @ Has no influence on @
performance relative performance

Q

®

o)
&

®
®

~

(N

-’
-~

Regularization is simply e
added at step 2

(n

@
<

Detrimental for
relative performance

$ ¢

Not available
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ML and estimation: 3. “What is better, adjustment or IPW?”

Asymptotically speaking:

e ATE are finite-dimensional estimands

e Efficient estimation is properly defined is a semi-parametric sense (lowest variance
estimator from all the possible parametric sub-models). Therein, the theory of influence
functions is used.

e A-IPW estimator is efficient is a combination of both adjustment and IPW:

Finite N S R (1 )Y(i) +
dimensional ATPW = 7 2uicy (WI(X(’)) ito(X @)
estimands 0 0
AY A i 1—AC N i
s [(1_ frl(X(i)))l'Ll(X()) o (1_ frO(X(")))'u'O(X())]

e A-IPW estimators are doubly-robust: if at least one of the nuisance parameters are
consistently estimated - the ATE is consistently estimated

e Alternatives: TMLE estimator (efficient), A-IPTW estimator with clipped propensities
(biased, but reduces variance).
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ML and estimation: 3. “What is better, adjustment or IPW?”

Asymptotically speaking:
e CATE are functions, thus, infinite-dimensional estimands
e No notion of efficient estimation, but there is Neyman orthogonality of a loss:
o loss is a finite-dimensional estimand
o so can efficiently estimate the loss

Infinite o Informally: it says that the estimation of CATE procedures that are at most minimally
dimensional affected by the estimation of nuisance parameters -> small errors in the estimated
estimands nuisance parameters have only small impact on the estimation of the target function.

e DR-and R-learners are Neyman orthogonal
e For CATE, Neyman orthogonality also implies two double-robustnesses:
o model double-robustness (at least one nuisance is estimated consistently -> CATE is
estimated consistently)
o rate double-robustness (convergence speed is the same of the fastest convergence

of the nuisance functions)
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ML and estimation: Neyman orthogonal methods

CATE estimation: estimating a function

Meta-learners: use
any combination
of models

Two-step learners:
Pseudo-outcome
regression:

- IPW-learner

- RA-learner / X-learner

- |DR-learner/ IF-learner

Loss-based:

- |R-learner (DML)
- U-learner
- |EP-learner

Plug-in

(one-step)

learners:
S-learner
T-learner

Model-based:
find the best-in-class
single model by
designing loss
One-step models:
- S-Net/ T-Net
- TARNet
- FlexTENet_
- CFR(RCFR)!
- DRCFR
- BW-CFR
- CEVAE
- Causal Forest
Two-step models:
- GANITE

LMU MUNICH SCHOOL OF MANAGEMENT

ATE / APO estimation:
estimating a parameter

Sample averaging of
pseudo-outcomes:

- IPW estimator

- RA estimator

- A-IPW estimator

Loss-based (TMLE):
- DragonNet
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ML and estimation: Neyman orthogonal methods

CAPO estimation: estimating a function

Meta-learners: use
any combination
of models

Two-step learners:
Pseudo-outcome
regression:

- IPW-learner

- RA-learner / X-learner

- |DR-learner/ IF-learner

Loss-based: _ ;
- lIPW-learner,

RA-learner / X-learner

DR-learner
I-learner

Plug-in

(one-step)

learners:
S-learner
T-learner

Model-based:
find the best-in-class
single model by
designing loss
One-step models:
- S-Net/ T-Net
- TARNet
- FlexTENet_
- CFR(RCFR)!
- DRCFR
- BW-CFR
- CEVAE
- Causal Forest
Two-step models:
- GANITE

LMU MUNICH SCHOOL OF MANAGEMENT

ATE / APO estimation:
estimating a parameter

Sample averaging of
pseudo-outcomes:

Loss-based (TMLE):

- IPW estimator
- RA estimator
-  A-IPW estimator

- DragonNet
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ML and estimation: 3. “What is better, adjustment or IPW?”

Best asymptotically does not mean best in low-sample!

‘No Free Lunch" :(

Best approach
in low-sample
regime
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ML and estimation: 4. “Can we do data-driven model selection?”

Best approach
in low-sample
regime

Best asymptotically does not mean best in low-sample!

‘No Free Lunch" :(

-4

Now, we don’t even have data-driven
model selection criteria, but only
heuristics
(Curth & van der Schaar, 2023)
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ML and estimation: 4. “Can we do data-driven model selection?”

Best approach
in low-sample
regime

Best asymptotically does not mean best in low-sample!

'No Free Lunch" :(

-4

Now, we don’t even have data-driven
model selection criteria, but only
heuristics
(Curth & van der Schaar, 2023)
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ML and estimation: 4. “Can we do data-driven model selection?”

Best approach
in low-sample
regime

Best asymptotically does not mean best in low-sample!

'No Free Lunch" :(

Possible solution: employ RCT (L2)
data (with sub-group level
counterfactuals)
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ML and estimation: 5. “How to address the selection bias?”

Should we do
something?

Selection bias matters in low-sample
regime, e.g. fea(x) overfits on the
factual data with high propensity

Thus, plug-in (one-step) learners are
sub-optimal in a sense, that they don’t
use all the data

Two-step learners act like ‘regularizers’
on the first stage output, acting on the
overfitted models

But by using two-step learners, we
introduce more parameters to estimate
and need to do sample-splitting

Alexander Calder - Untitled
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ML and estimation: 6. “Can we incorporate inductive biases for
nuisance functions estimation?”

[00=- fio(a) O o) | Qjle-io@| D@ o00e
Sharing D D D p- | jnn-= ()
' X i1 (x . $\$\4\¢\¢ >iul(z
o fula) 11100 T I [ 1 S N R
a
(1) Regularization for TNet (left) and TARNet (right)  (2) Reparametrization (3) FlexTENet
Sharing O - I:":”:I . BRR- o (= RN - 2o (@) mmm—FRH- 70)
representations 1| e III fols N 1R oo e
for all the & 21 l:":”] fn(z)D III (@ III U@ =gag Uil -7 @)
nuisance 0+« 000 #@ - #@ BEE- 00 # | ~D0E-[O0 - #«)
functions TNet TARNet (SNet-1) DragonNet (SNet-2 ) DR-CFR (SNet-3 ) SNet

See (Curth & van der Schaar, 2021a; Curth & van der Schaar, 2021b)
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ML and estimation: Addressing selection bias

CATE estimation: estimating a function

Meta-learners: use
any combination
of models

Two-step learners:
Pseudo-outcome
regression:

- |IPW-learner

- RA-learner / X-learner

- DR-learner/ IF-learner

Loss-based:

- R-learner (DML)
- U-learner
- EP-learner

Plug-in

(one-step)

learners:
S-learner
T-learner

Model-based:

find the best-in-class

single model by

designing loss

One-step models:

= S-Net/ T-Nef
- TARNet

-  FlexTENet

- CFR(RCFR)
- DRCFR
- BW-CFR
- CEVAE
- Causal Forest
Two-step models:
- GANITE

LMU MUNICH SCHOOL OF MANAGEMENT

ATE / APO estimation:
estimating a parameter

Sample averaging of
pseudo-outcomes:

Loss-based (TMLE):

- IPW estimator
- RA estimator
-  A-IPW estimator

- DragonNet
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ML and estimation: 6. “Can we incorporate inductive biases for
nuisance functions estimation?”

We can design ML models, which incorporate inductive biases, but
we cannot validate/select them in a data-driven way.

Dilemma of the
model
selection

|s deep-learning even useful in this case? (We hope it can be)
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ML and estimation: 7. “Can we do end-to-end learning?”

e \We want to design a loss to find best-in-class model to estimate CATE.

e Idea: employ representation learning to map the covariates to a lower-dimensional space
and reduce variance of CATE estimation:

B(-) : X — B(X)

Representation
learning for

CATE
estimation

estimation.

Predicted potential outcomes

> Estimator for control group ---
s N
> Estimator for treated -_-

\ ) L
[
Covariates Group-conditional risk

(a) T-learner

Neural network layers

e W

—_—

—»...—-<1>~|::

- =

|
Covariates

—

|
Shared representation

Fo—)

e Holy grail: prognostic score, namely minimal sufficient information in covariates for CATE

e Most common implementation, neural-network based approach, e.g., TARNet:

Predicted potential outcomes Intervention

|
[ARSORT

Empirical risk Outcome

(b) TARNet (Shalit et al., 2017)

60



ML and estimation: End-to-end learning methods

CATE estimation: estimating a function

Meta-learners: use
any combination
of models

Two-step learners:
Pseudo-outcome
regression:

- |IPW-learner

- RA-learner / X-learner

- DR-learner/ IF-learner

Loss-based:

- R-learner (DML)
- U-learner
- EP-learner

Plug-in

(one-step)

learners:
S-learner
T-learner

Model-based:

find the best-in-class
single model by
designing loss

One-step models:

- S-Net/T-Net

-  TARNet

- FlexTENet

- CFR (RCFR)

- DRCFR

- BW-CFR

- CEVAE

- Causal Forest

Two-step models:
- GANITE

LMU MUNICH SCHOOL OF MANAGEMENT

ATE / APO estimation:
estimating a parameter

Sample averaging of
pseudo-outcomes:

- IPW estimator

- RA estimator

- A-IPW estimator

Loss-based (TMLE):
- DragonNet
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ML and estimation: Representation learning for CATE

e Foridentifying prognostic score, we would need to know the structure inside of X, namely,
what are the ground-truth confounders, instruments, and noise:

?,03
(4) Y
Prognostic

scores Original causal \W ’,,"
diagram &45—>

Clustered causal diagram

e But to do that, we have to learn an original full CATE (which makes the prognostic score
obsolete)
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ML and estimation: Representation learning for CATE

(Shalit et al. 2017) proposed to enforce treatment balancing on top of the invertible

o
representations with Counterfactual Regression (CFR):

Neural network layers Predicted potential outcomes Outcome

|
C
X .- -[IE Risk

| S S S—

Balanced | | | |
represe ntations Covariates Shared representation Treatment group distance Intervention

e It was shown, that we can improve the counterfactual generalization risk (= address
selection bias).
e \We can also build CFR with low-dimensional (=non-invertible) representations, but then we

can induce the confounding bias (Melnvchuk et al. 2023).

ﬂ : X — ®(X)
(4
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ML and estimation: Representation learning for CATE

Post-CFR
papers

e After CFR, the whole bunch of methods were proposed (which is not really helpful tbh):

Method Invertibility

Balancing with

empirical probability metrics

loss re-weighting

TARNet (Shalit et al., 2017; Johansson et al., 2022) - -

BNN (Johansson et al., 2016); CFR (Shalit et al., 2017; Johansson et al., 2022); ESCFR (Wang et al., 2024) IPM (MMD, WM)

RCFR (Johansson et al., 2018; 2022) - IPM (MMD, WM)

Learnable weights

DACPOL (Atan et al., 2018); CRN (Bica et al., 2020); ABCEI (Du et al., 2021); CT (Melnychuk et al.,

2022); MitNet (Guo et al., 2023); BNCDE (Hess et al., 2024) - 15D (adversarial lcaming) -

SITE (Yao et al., 2018) Local similarity Middle point distance -

CFR-ISW (Hassanpour & Greiner, 2019a); DR-CFR (Hassanpour & Greiner, 2019b); DeR-CFR (Wu : g
et al., 2022) IPM (MMD, WM) Representation propensity
DKLITE (Zhang et al., 2020) Reconstruction loss Counterfactual variance -

BWCEFR (Assaad et al., 2021) - IPM (MMD, WM) Covariate propensity

PM (Schwab et al., 2018); StableCFR (Wu et al., 2023) - -

Upsampling via matching

IPM: integral probability metric; MMD: maximum mean discrepancy; WM: Wasserstein metric; JSD: Jensen-Shannon divergence

e If representations are low-dimensional, then they might contain confounding bias -> but
this might be fine, we just consider it as a part of the statistical bias-variance trade-off

64



LMU MUNICH SCHOOL OF MANAGEMENT

ML and estimation: Representation learning for CATE

e After CFR, the whole bunch of methods were proposed (which is not really helpful tbh):

Method Invertibility Balancing with

empirical probability metrics ~ loss re-weighting

TARNet (Shalit et al., 2017; Johansson et al., 2022) - - _

BNN (Johansson et al., 2016); CFR (Shalit et al., 2017; Johansson et al., 2022); ESCFR (Wang et al., 2024) - IPM (MMD, WM) -
RCFR (Johansson S T B “.earnable weights
DACPOL (Atan ¢

2022); MitNet (G

smowsa:  BUL, We don’'t have data-driven model
CFR-ISW (Hassa - - .
Post-CFR ctal, 2020 selection criteria -> unclear how to

papers DKLITE (Zhang (

BT choose balancing e et

PM (Schwab et al Jpsampling via matching
IPM: integral prol

epresentation propensity

e If representations are low-dimensional, then they might contain confounding bias -> but
this might be fine, we just consider it as a part of the statistical bias-variance trade-off
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Extensions: New challenges

e Epistemic uncertainty was studied for CATE / CAPO
e Aleatoric uncertainty for POs (Melnychuk et al. 2023), TEs (submitted to NeurlPS 2024)
e Total uncertainty for CATE and CAPO with conformal prediction

Uncertainty of
TEs / POs

e Marginal sensitivity model, general sensitivity model (Frauen et al. 2023), B-learner
e Instrumental variables regression
e Proxy variables

Hidden
confounding

Time-varying
potential e LSTMs / Transformer-based models
outcomes e Irregular sampling times / continuous time

Explainability o  Expjainability/interpretability of two-step learners
Interpretability


https://proceedings.mlr.press/v202/melnychuk23a/melnychuk23a.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7f8b8bc8ebac661c442c4dafd5d98c08-Paper-Conference.pdf
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Thank you for your attention!

Main message: CATE estimation is
very different from regular ML
predictive modelling

Questions?




