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VISION

Promises of Causal ML

1 Feuerriegel, Stefan, et al. "Causal machine learning for predicting treatment outcomes." Nature Medicine 30.4 (2024): 958-968.



Why do we need 
Causal ML in medicine?

Reference:
Feuerriegel, S., Frauen, D., Melnychuk, V., Schweisthal, J., Hess, K., Curth, A., Bauer, S., Kilbertus, N., Kohane, I.S. and van der 
Schaar, M., 2024. Causal machine learning for predicting treatment outcomes. Nature Medicine, 30(4), pp.958-968.
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TERMINOLOGY

Moving from diagnostics to therapeutics: Estimating treatment effects with ML



1) Real-World Evidence — Where Are We Now? https://www.nejm.org/doi/full/10.1056/NEJMp2200089
2) Real-World Evidence — What Is It and What Can It Tell Us? https://www.nejm.org/doi/full/10.1056/nejmsb1609216
3) Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness https://jamanetwork.com/journals/jama/fullarticle/2697359 

TERMINOLOGY

Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

The US Food and Drug Administration (FDA) defines 1,2,3:

Real-world data
(RWD)

Real-world evidence 
(RWE)

▪ Data relating to patient health status and the delivery of healthcare
▪ Examples: electronic health records (EHRs), claims and billing activities, 

disease registries, …
▪ Naming: observational data (≠ experimental data)

▪ Analysis of RWD regarding usage and effectiveness
▪ Vision: greater personalization of care
▪ Disclaimer: should not replace but augment RCTs

5

▪ Aim: estimate treatment effectiveness
▪ Challenges: representativeness (selection bias), no proper randomization, …
▪ Custom methodologies: target trial emulation, causal machine learning, …

https://www.nejm.org/doi/full/10.1056/NEJMp2200089
https://www.nejm.org/doi/full/10.1056/nejmsb1609216
https://jamanetwork.com/journals/jama/fullarticle/2697359
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Application scenarios of RWD
VISION

1 … in the absence of a standard of care 

3 … when RCTs are unethical

▪ Specific subtypes of diseases with no standard of care yet (e.g., oncology)
▪ New or experimental drugs (e.g., orphan drugs, is Biontech vs. Moderna vaccine more 

effective for subcohort X?) 

2 … in complex, high-dimensional decision problems

▪ Complex dosaging problems (e.g., chemotherapy, combi-treatments)

▪ Vulnerable populations (pregnant women, children, severely ill, etc.) 1

RWD helps to guide decision-making (beyond RCTs): 

4 … when a greater personalization is desired 

▪ Highly granular subpopulations that cannot be really placed in RCTs (e.g., women, above 
60, with comorbidity X, Y & Z or generally specific patient trajectories) 
→ maybe a subpopulations responds different for a specific drug, or a second line of 
treatment is more effective than the first line? 

▪ Personalization based on genome data (e.g., precision medicine)

1) The Effectiveness of Right Heart Catheterization in the Initial Care of Critically III Patients https://jamanetwork.com/journals/jama/article-abstract/407990 

▪ Safety questions
▪ Especially side 

effects can be large 
and needs to be 
estimated (and may 
not be possible due 
to 
population-specific 
RCT but outside

https://jamanetwork.com/journals/jama/article-abstract/407990


EXAMPLE

Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a meaningful RWE challenging?

Real-world data
(RWD)

Real-world evidence 
(RWE)

▪ Observational data of
○ sunscreen usage (binary treatment)
○ number of drowning-related deaths 

(outcome)

▪ Evidence: The higher the usage of sunscreen -> the more likely is the chance 
of drowning
▪ This is counterintuitive: Is there something we didn’t account for?

8

▪ Aim: effect of sunscreen on the chance of drowning

?



EXAMPLE

Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a meaningful RWE challenging?

Real-world data
(RWD)

Real-world evidence 
(RWE)

▪ Observational data of
○ sunscreen usage (binary treatment)
○ number of drowning-related deaths 

(outcome)
○ intensity of sunlight (covariates)

▪ Evidence: no association between sunscreen usage and chance of drowning 
in each group of sunlight
▪ Comparing with the previous slide: Intensity of sunlight is a confounder 

9

▪ Aim: effect of sunscreen on the chance of drowning for different intensities of 
sunlight 

?



AIM

Understanding heterogeneity in the treatment effect
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▪ Focus is often on average treatment effect (ATE)

▪ ATE is aggregated across the population 
▪ ATE cannot tell whether a treatment works for 

some or not 
→ e.g., medication works only for women but not 
for men, but RCT was done with all patients 

▪ NB: both RCTs and target trial emulation focus on 
ATEs

To personalize treatment recommendations, we need to understand the individualized treatment effect (ITE)



Short introduction 
to causal machine learning

Reference:
Feuerriegel, S., Frauen, D., Melnychuk, V., Schweisthal, J., Hess, K., Curth, A., Bauer, S., Kilbertus, N., Kohane, I.S. and van der 
Schaar, M., 2024. Causal machine learning for predicting treatment outcomes. Nature Medicine, 30(4), pp.958-968.
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PRIMER

Ladder of causation  

1 Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507–556.

1

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher 
layer. For the inference from lower layer data, we need to make additional assumptions.

Pearl’s 
layers of 

causation
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PRIMER

Ladder of causation  

Pearl’s 
layers of 
causation

1 Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507–556.

1

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher 
layer. For the inference from lower layer data, we need to make additional assumptions. 

Traditional ML

Pearl’s 
layers of 

causation
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PRIMER

Ladder of causation  

Pearl’s 
layers of 
causation

1 Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507–556.

1

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher 
layer. For the inference from lower layer data, we need to make additional assumptions.

Causal ML
Pearl’s 

layers of 
causation



Problem 
formulation
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PRIMER

Estimating the potential outcomes of treatments
▪ Given i.i.d. observational dataset

○ covariates
○ (binary) treatments 
○ continuous (factual) outcomes 

▪ We want to identify & estimate 
treatment outcomes: 

○ treatment effects

○ potential outcomes 
(separately) 

▪ Fundamental problem:
never observing both potential
outcomes!

Problem 
formulation



Traditional 
ML 
vs. 
Causal ML
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Traditional ML vs. Causal ML
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PRIMER

Causal ML Workflow
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PRIMER

Causal ML Workflow
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PROBLEM SETUP

Causal quantities of interest
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PROBLEM SETUP

Assumption frameworks

Potential 
outcomes 
framework 

(Neyman-Rubin)

Structural causal model (SCM) 
(Pearl-Bareinboim)

Causal graph
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PROBLEM SETUP

Assumption frameworks: SCMs and causal graphs

Potential 
outcomes 
framework 

(Neyman-Rubin)

Structural causal model (SCM) 
(Pearl-Bareinboim)

Causal graph

Assumptions stem from 
structural knowledge
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PROBLEM SETUP

Assumption frameworks: Potential outcomes framework

Potential 
outcomes 
framework 

(Neyman-Rubin)

Structural causal model (SCM) 
(Pearl-Bareinboim)

Causal graph

More general

(i) Consistency
(ii) Positivity (Overlap)
(iii) Exchangeability 
(Ignorability)
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PROBLEM SETUP

Assumption frameworks

Potential 
outcomes 
framework 

(Neyman-Rubin)

Structural causal model (SCM) 
(Pearl-Bareinboim)

Causal graph
=
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Aim: estimate heterogeneous treatment effect of development aid on SDG outcomes

▪ Treatment A: development aid earmarked to end the HIV/AIDS epidemic
▪ Outcome Y: relative reduction in HIV infection rate
▪ Covariates X: control for differences in country characteristics

24

Causal graph Causal quantity of interest Assumptions

PROBLEM SETUP

Example of a case study
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Primer: Identification vs. Estimation

Identification
(infinite data)

Estimation
(finite data)

observational distribution

target quantity

Potential 
outcomes 
framework 

(Neyman-Rubin)

identification formulas

back-door adjustment

inverse propensity of 
treatment weighting 

(IPTW)

identification formulas

sample from observational distribution

Semi-parametric 
efficiency theory 

/ 
Orthogonal 

learning efficient estimator

augmented inverse 
propensity of treatment 

weighting (A -IPTW)
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PRIMER

Causal ML Workflow



CAUSAL ML

Challenges and open questions fitting an ML model

Challenges

Open 
problems
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CAUSAL ML

Challenges and open questions fitting an ML model

Challenges

▪ Selection bias: parts of the population rarely 
gets treated 

▪ Selection bias: parts of the population rarely 
gets treated 

▪ Fundamental problem: never observing a 
difference of potential outcomes

Open 
problems

▪ How to effectively address selection bias? 
▪ How to incorporate inductive biases, e.g., 

regularize CAPO / CATE models?
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1. Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.
2. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.
3. Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application." Observational studies 5.2 (2019): 37-51.
4. Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.
5. Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019).

Meta-
learners

Model-based 
learners

▪ Model-specific methods make adjustments to existing ML models to address statistical 
challenges arising in treatment effect estimation

▪ Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, Athey 
2019)

▪ Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

▪ Meta-learners (Kunzel 2019) are model-agnostic methods for CATE estimation 
▪ Can be used for treatment effect estimation in combination with an arbitrary ML model of 

choice (e.g., a decision tree, a neural network)

CAUSAL ML

Methods
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learners

Model-based 
learners

▪ Model-specific methods make adjustments to existing ML models to address statistical 
challenges arising in treatment effect estimation

▪ Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, Athey 
2019)

▪ Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

CAUSAL ML

Methods

One-stage 
learners

Two-stage 
learners

▪ “Plug-in learners”: fit a single regression model with a treatment as an input 
or two regression models for each treated and control sub-groups 

▪ Examples: S-learner and T-learner

▪ Two-stages of learning: derive and estimate pseudo-outcomes as 
surrogates, which has the same expected value as the CATE

▪ Examples: DR-learner and R-learner
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CAUSAL ML

Methods

One-stage 
learners

Two-stage 
learners

▪ “Plug-in learners”: fit a single regression model with a treatment as an input 
or two regression models for each treated and control sub-groups 
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34Curth, Alicia, and Mihaela Van der Schaar. "Nonparametric estimation of heterogeneous treatment effects: From theory to learning algorithms." International Conference on Artificial Intelligence and Statistics. PMLR, 2021.

Example: meta-learners for CATE

Method: Using any ML model to fit relevant parts of the observed distribution, namely, nuisance functions. 
Then, we can use the nuisance functions estimators for the final CATE model.

CAUSAL ML

One-stage and two-stage meta-learners
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CAUSAL ML

Comparison of meta-learners
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Example: TarNET / CFRNet for CATE

Method: Learning a low-dimensional (balanced) representation Ф() of high-dimensional covariates. Then, we 
can fit a CATE model based on the representations.  

CAUSAL ML

Model-based learners: Representation learning
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Example: TarNET / CFRNet for CATE

Method: Learning a low-dimensional (balanced) representation Ф() of high-dimensional covariates. Then, we 
can fit a CATE model based on the representations.  

CAUSAL ML

Model-based learners: Representation learning

Unbalanced
Unconfounded Balanced

Potentially confounded



Illustrations of treatment effects analysis in the medical science field. A. An example of a causal relationship. B. Estimating causal treatment 
effects from real-world data under the Neyman-Rubin framework. (a) Subjects in RCTs are randomly assigned to a treatment group and a 
control group, thus the subjects in both groups have similar characteristics. (b) Subjects in real-world data are not randomly assigned to a 
treatment group and control group due to disease indication. (c) Matching subjects in each group can reduce bias [13]. (d) Weighting subjects 
by their propensity for treatment can create a comparable pseudo population [14], [15] (Details described in S.1.1). (e) Neyman-Rubin causal 
effect calculation. C. Heterogeneous treatment effects vs. Average treatment effect. Patients are diverse and treatment effects vary. Estimating 
the average treatment effect (ATE) may oversimplify the heterogeneity of each patient.

https://www.sciencedirect.com/science/article/pii/S1532046422002611?casa_token=ZW3QExy9WhsAAAAA:HjE_pzbFMBISR7z3sd4FZ822nIc5a1hDUq06lupoxjkN-su2NctEElYrNdqR4vK9HIO8QAZepw#b0065
https://www.sciencedirect.com/science/article/pii/S1532046422002611?casa_token=ZW3QExy9WhsAAAAA:HjE_pzbFMBISR7z3sd4FZ822nIc5a1hDUq06lupoxjkN-su2NctEElYrNdqR4vK9HIO8QAZepw#b0070
https://www.sciencedirect.com/science/article/pii/S1532046422002611?casa_token=ZW3QExy9WhsAAAAA:HjE_pzbFMBISR7z3sd4FZ822nIc5a1hDUq06lupoxjkN-su2NctEElYrNdqR4vK9HIO8QAZepw#b0075


Where we are (and what is still needed):
Current state of causal ML research 
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PRIMER

Causal ML Workflow
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CAUSAL ML

Extensions & Open research problems

▪ Selection and validation of CATE models
○ Unlike traditional ML, we do not have a ground truth 

validation subset
▪ Robustness checks wrt. violation of assumptions

○ Sensitivity models
○ Spillover effects

▪ Extensions to more complicated settings
○ continuous / high-dimensional treatments
○ time-varying potential outcomes and treatment effects

▪ Data fusion from multiple environments  
▪ Constrained ML: interpretability, privacy enforcement

▪ Uncertainty quantification
○ uncertainty of estimation (aka confidence intervals)
○ predictive uncertainty (aka predictive intervals)

Model validity1

Flexibility2

Uncertainty 
quantification

3
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EXTENSIONS & OPEN RESEARCH QUESTIONS

Model validity: Robustness checks wrt. violation of assumptions



43Melnychuk, Valentyn, Dennis Frauen, and Stefan Feuerriegel. "Causal transformer for estimating counterfactual outcomes." International Conference on Machine Learning. PMLR, 2022.

EXTENSIONS & OPEN RESEARCH QUESTIONS

Flexibility: Causal ML for predicting outcomes over time
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EXTENSIONS & OPEN RESEARCH QUESTIONS

Flexibility: Continuous / high-dimensional treatments
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EXTENSIONS & OPEN RESEARCH QUESTIONS

Uncertainty quantification
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Identifying predictive biomarkers (=treatment responders)
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VISION

Promises of Causal ML

1 Feuerriegel, Stefan, et al. "Causal machine learning for predicting treatment outcomes." Nature Medicine 30.4 (2024): 958-968.
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