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VISION
Promises of Causal ML

Estimating treatment effects for vulnerable groups

Augmenting evidence
from RCTs

Finding optimal
dosages

ML for

treatment effect
estimation

Guiding treatment choice when a
standard of care is absent

Estimating post-approval
efficacy, including side effects

Estimating treatment effects
for long-term outcomes

Designing treatment
recommendations for rare diseases
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Why do we need
Causal ML in medicine?
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TERMINOLOGY
Moving from diagnostics to therapeutics: Estimating treatment effects with ML

Traditional ML Causal ML
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TERMINOLOGY
Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

The US Food and Drug Administration (FDA) defines '-23:

= Data relating to patient health status and the delivery of healthcare

E Real-world data = Examples: electronic health records (EHRS), claims and billing activities,
y (RWD) disease registries, ...
= Naming: observational data (# experimental data)
= Analysis of RWD regarding usage and effectiveness
c\’/ MOl T OV LIEE = Vision: greater personalization of care
Dt (RWE) - greater p

= Disclaimer: should not replace but augment RCTs

1)  Real-World Evidence — Where Are We Now? https://www.nejm.ora/doi/full/10.1056/NEJMp2200089
2) Real-World Evidence — What Is It and What Can It Tell Us? https://www.nejm.org/doi/full/10.1056/nejmsb1609216
3) Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness https://jamanetwork.com/journals/jama/fullarticle/2697359
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TERMINOLOGY

Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

The US Food and Drug Administration (FDA) defines '-23:

= Data relating to patient health status and the delivery of healthcare

Real-world data = Examples: electronic health records (EHRS), claims and billing activities,
(RWD) disease reqistries, ...

= Naming: observational data (# experimental data)

o = Aim: estimate treatment effectiveness

xj): = Challenges: representativeness (selection bias), no proper randomization, ...
= Custom methodologies: target trial emulation, causal machine learning, ...

= Analysis of RWD regarding usage and effectiveness
Real-world evidence = Vision: greater personalization of care
(RWE) -9 P

= Disclaimer: should not replace but augment RCTs

1)  Real-World Evidence — Where Are We Now? https://www.nejm.ora/doi/full/10.1056/NEJMp2200089
2) Real-World Evidence — What Is It and What Can It Tell Us? https://www.nejm.org/doi/full/10.1056/nejmsb1609216
3) Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness https://jamanetwork.com/journals/jama/fullarticle/2697359
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VISION
Application scenarios of RWD

RWD helps to guide decision-making (beyond RCTs):

1)

o ... in the absence of a standard of care

= Specific subtypes of diseases with no standard of care yet (e.g., oncology)

= New or experimental drugs (e.g., orphan drugs, is Biontech vs. Moderna vaccine more
effective for subcohort X?)

e ... in complex, high-dimensional decision problems

= Complex dosaging problems (e.g., chemotherapy, combi-treatments)

e ... when RCTs are unethical

= Vulnerable populations (pregnant women, children, severely ill, etc.)

9 ... when a greater personalization is desired

= Highly granular subpopulations that cannot be really placed in RCTs (e.g., women, above
60, with comorbidity X, Y & Z or generally specific patient trajectories)
— maybe a subpopulations responds different for a specific drug, or a second line of
treatment is more effective than the first line?

= Personalization based on genome data (e.g., precision medicine)

The Effectiveness of Right Heart Catheterization in the Initial Care of Critically Il Patients https://jamanetwork.com/journals/jamal/article-abstract/407990
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EXAMPLE
Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a meaningful RWE challenging?

= Observational data of & o
Real-world data o sunscreen usage (binary treatment) | 6‘_)_,} -

(RWD) o number of drowning-related deaths $i
(outcome) ‘

= Evidence: The higher the usage of sunscreen -> the more likely is the chance
of drowning

Real-world evidence
(RWE)

= This is counterintuitive: Is there something we didn’t account for?




EXAMPLE
Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a meaningful RWE challenging?

= Observational data of

Real-world data o sunscreen usage (binary treatment)
(RWD) o number of drowning-related deaths
(outcome)
o intensity of sunlight (covariates)

o = Aim: effect of sunscreen on the chance of drowning for different intensities of
x7 —~——— sunlight
ox X

= Evidence: no association between sunscreen usage and chance of drowning
in each group of sunlight

= Comparing with the previous slide: Intensity of sunlight is a confounder

Real-world evidence

(RWE)




AIM
Understanding heterogeneity in the treatment effect

= Focus is often on average treatment effect (ATE) E
2 Individualized
. . 21 treatment effect
= ATE is aggregated across the population %
= ATE cannot tell whether a treatment works for P L isssshiasive
some or not than average

— e.g., medication works only for women but not
for men, but RCT was done with all patients

more effective
than average

= NB: both RCTs and target trial emulation focus on
ATEs

Age

& To personalize treatment recommendations, we need to understand the individualized treatment effect (ITE)

10
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Short introduction
to causal machine learning

l
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PRIMER
Ladder of causation

Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell me
P(y|z) How would seeing X about a disease?
change my belief inY? What does a survey tell us
about the election results?
EE S 2. Intervention Doing What if? What if I take aspirin, will my
layers of P(y|do(x), z) Intervening What if I do X7 headache be cured?
causation What if we ban cigarettes?

& Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher
layer. For the inference from lower layer data, we need to make additional assumptions.

! Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507-556.



PRIMER
Ladder of causation

Level Typ-ic-al Typical Questions Examples Traditional ML
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell me
P(y|z) How would seeing X about a disease?
change my belief inY? What does a survey tell us
about the election results?
EE S Z. Intervention DoIng What if? What if T take aspirin, will my
layers of P(y|do(x), z) Intervening What if I do X7 headache be cured?
causation What if we ban cigarettes?

& Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher
layer. For the inference from lower layer data, we need to make additional assumptions.

! Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507-556.



PRIMER
Ladder of causation

Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell me
P(y|z) How would seeing X about a disease?
change my belief inY? What does a 5 Causal ML
Pearl’s 2. Intervention Doing What if? What if I take aspirin, will my
layers of P(y|do(x), z) Intervening What if I do X7 headache be cured?
causation What if we ban cigarettes?

& Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher
layer. For the inference from lower layer data, we need to make additional assumptions.

! Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing
Machinery, 2022, pp. 507-556.



PRIMER
Estimating the potential outcomes of treatments

= Given i.i.d. observational dataset D = {:Cz-, ai, Y; ?:1 ~ IP(X, A, Y)
(x) covariates 5 _
_ 5 tienté Covariates Tretent Outcpme
(4)  (binary) treatments a @ @) ®=v0 @)=r0)
Y Contlnuous (faCtuaI) OUtComeS ............ ...................................
R OB=MH: o ! -10
o o I 1 2.3
S . e 1 .03
=  We want to identify & estimate . iSO SO === SR S S 0 A S
Problem

treatment outcomes:

formulation

o treatment effects
Y[1] — Y[0]

o potential outcomes
(separately) Y[0] Y[1]

Covariates Potential outcomes Treatment effect
Y@ Y Y1) -Y(0)

........................................................................................................................................................

Patient :

Q : 1—1_ — ? ? ?
. Fundamental problem: 0[_| ........... ‘7 ........... )? ........................
never observing both potential L——{_ ..................................................

outcomes!




Traditional ML vs. Causal ML

Traditional
ML
VS.
Causal ML

Traditional ML
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PRIMER

Causal ML Workflow

[Define a research question & collect data QJ

————————————————————————

1

: (i Potential cutcome ) :
l - - 1
. o | Define a causal quantity of interest N\ \ \ i
: 3 ~ Patient characteristic ) :
+ D vy 1 !
1 N e .
1 . .
+ £ | Define a causal graph N '
- @—0
-a Pt .
{ & il : o surva :
: Assess plausibility of assumptions  [#eeswy :
1 N\ ) .
: 1

: 4 == :
- ’ . S !
+ S | Choose & fit treatment effect predictor }Q !
: ™ S :
2 o -
! 8 Perform checks | :
; L J

[Interpret the results

17



PRIMER

Causal ML Workflow

[Define a research question & collect data QJ

Problem setup

" Potential cutcome P
Define a causal quantity of interest 2\ s\

e ¢ T Patient characteristic _J

(0 N\

: @

Define a causal graph N\

§ O—0

(i ¢ T )\

e - (i) SUTVA

Assess plausibility of assumptions  [#eeswy

b J

: (" == :
- ’ . S !
+ S | Choose & fit treatment effect predictor }Q !
: ™ = :
2 o -
1 @© | ;
. () | Perform checks ! !
: 8 J

[Interpret the results

18



PROBLEM SETUP
Causal quantities of interest

averaged effects Effect heterogeneity individualized effects
vestment || | 7= E(Y[1] - Y[0) | | r(@) =E(Y[1] - Y[l |2) | { ~
effect average treatment effect (ATE) PR conditional average treatment effect (CATE)
potential RIS
(counterfactual) Ha = E(Y[a]) ] I S ta(z) = E(Yla] | z)
outcomes average potential outcome (APO) Pasent characioe conditional average potential outcome (CAPO)




PROBLEM SETUP
Assumption frameworks

D = {xhaf’iay’i ?:1 ™~ IP)()(7147}/)

Structural causal model (SCM)
(Pearl-Bareinboim)

Potential
outcomes
framework

(Neyman-Rubin)

l '

Causal graph

Treatment effect

[-=E(Y[) -Yo])] | [ 7(2) =E(¥[1] - Y[0] | =)

conditional average treatment effect (CATE)

=Y

average treatment effect (ATE) Patient characteris

/

Potential outcome

(. —EYa) ) | (o) =E(¥[a] | @) |

conditional average potential outcome (CAPO)

average potential outcome (APO) Patient characteristic

/




PROBLEM SETUP
Assumption frameworks: SCMs and causal graphs

D = {x’i)af’iay’i ?:1 ™~ ]ID(XaA)Y)
I I Assumptions stem from
structural knowledge

Potential Structural causal model (SCM)
outcomes (Pearl-Bareinboim)
framework

(Neyman-Rubin) Causal graph

: '

| Treatment e | Treatment fect
| r=E[1] - Y[0) | | () =E(Y[1] - Y]0] | =) | 1~
average treatment effect (ATE) o oharaiorio conditional average treatment effect (CATE) B ihort characion:
A Potential outcome A Potential outcome i (z)
| 1. =E([a]) | | pa(2) =E(¥ld] |2) | R~ <),
average potential outcome (APO) Pationt charactarisc conditional average potential outcome (CAPO) T Patent charactorstc




PROBLEM SETUP

Assumption frameworks: Potential outcomes framework

D = {z;,a;,y;}7—1 ~P(X,AY)

More general

(i) Consistency

(Ignorability)

(ii) Positivity (Overlap)
(iif) Exchangeability

Potential
outcomes
framework

(Neyman-Rubin)

l

Structural causal model (SCM)
(Pearl-Bareinboim)

Causal graph

v

[ r=E(Y[1] - Y[o]) | !

average treatment effect (ATE)

Treatment effect

Patient characteristi

Treatment effect

>

| 7(z) = E(Y[1] - Y[0] | @) |

conditional average treatment effect (CATE) Dort Characioon:

§

| . =E(Y[a]) |

Potential outcome

average potential outcome (APO)

>
Patient characteristic

Potential outcome

[ ta(2) =E(¥]d] | ) |

conditional average potential outcome (CAPO) Cationt; charactarissc

g&
.- b~
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PROBLEM SETUP
Assumption frameworks

D = {xhaf’iay’i :?:1 ™~ IP)()(7147}/)

Potential Structural causal model (SCM)
outcomes (Pearl-Bareinboim)
framework -

(Neyman-Rubin) Causal graph

l '

Treatment effect

(F=E@[-Yo])] | [7(e) =E(Y[1] - ¥[0] | =) | |

average treatment effect (ATE) Patan charageriatc conditional average treatment effect (CATE) Daiore charadioron:
Potential outcome Potential outcome
A 41(@)
= E(Y|a]) pa(z) = E(Ya] | 2) N

average potential outcome (APO) Patient characteristi conditional average potential outcome (CAPO) Fatient, chiractorstc
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PROBLEM SETUP
Example of a case study

Aim: estimate heterogeneous treatment effect of development aid on SDG outcomes

= Treatment A: development aid earmarked to end the HIV/AIDS epidemic
=  Qutcome Y: relative reduction in HIV infection rate
= Covariates X: control for differences in country characteristics

Causal graph Causal quantity of interest

Consistency: Y =Y (a)if A =a

[ Ha (:Ij) = E(Y[a,] | aj) ] Positivity: 0 < p(A=a | X =2z) < 1,Va e A

conditional average potential outcome (CAPO)

Ignorability: Y(a) L A| X =z ,Va € A

24



Primer: ldentification vs. Estimation

P(X,A,Y) = E(E[Y | a, X))
observational distribution Potential back-door adjustment
outcomes 1(A=a)
Identification —  framework % = [W Y]
(infinite data) [ — E(Y[a]) ] (Neyman-Rubin) inverse propensity of
treatment weighting

average potential outcome (APO)

target quantity identifi€dtibWormulas

D = {xhaf’iayi ?:1 ~ P(Xa A7Y)

— L0, 225 (1 ule)) + il

sample from observational distribution

Estimation . . = {fa(z) =E[Y | A= 0, X = z;
(finite data) = E(E[Y | a, X]) z‘fﬁr;'(;ﬁigatf;sg:; Fo(z) =Pl[A=a| X = 2]}
1(A=a) ,| —— / — augmented inverse
=E WY Orthogonal propensity of treatment
learning WRgBRPEdEtdMNY)

identification formulaé

25



PRIMER

Causal ML Workflow

[Define a research question & collect data QJ

------------------------

1

: (i Potential cutcome ) :
l - - 1
. o |Define a causal quantity of interest <\ \ \ '
: 3 ~ Patient characteristic ) :
+ D vy 1 !
1 N e .
1 . .
+ £ | Define a causal graph N '
- @—0
=R Pt .
B il : () suTvA :
- Assess plausibility of assumptions  |[guoeese 4,
D )
: 1

Causal ML

Y

7 N
§ Be
Choose & fit treatment effect predictor %Q.
. b
v 1
7 N
Perform checks |
& J

Y

[Interpret the results
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CAUSAL ML
Challenges and open questions fitting an ML model

[ tta(2) =E(¥]a] | ) |

conditional average potential outcome (CAPO) A_ Training data
& :
v om o |o-%
O N, -
ge] ¢ o - Q’
£ ® ® a
A o

Challenges a °
| 7(2) = E(Y[1] - Y[0] | 2) | - .
conditional average treatment effect (CATE) % [ | ® O o
o) L]
28]
I I I I
Age

Open
problems




CAUSAL ML
Challenges and open questions fitting an ML model

[ tta(2) =E(¥]a] | ) |

conditional average potential outcome (CAPO) A_ Tralning data
= Selection bias: parts of the population rarely e B o o - x
ets treated S - o
| S5 o * o | =-%
= o ® B
v | ® - ?
Challenges a °
| 7(2) = E(Y[1] - Y[0] | 2) | - .
conditional average treatment effect (CATE) % [ B ® O o
o
= Selection bias: parts of the population rarely m | | | |
gets treated Age 6_)

Open
problems




CAUSAL ML
Challenges and open questions fitting an ML model

[ tta(2) =E(¥]a] | ) |

conditional average potential outcome (CAPO) A_ Tralning data
—— | ® i
= Selection bias: parts of the population rarely T B o - x
ets treated A -
° 8 O ® @ = Q,
£ O o |
v | . - ?
Challenges @ ° _n
| 7(2) = E(Y[1] - Y[0] | 2) | . . "
conditional average treatment effect (CATE) % [ B o 0 o
@)
= Selection bias: parts of the population rarely m | | | |
gets treated Age 6_)

= Fundamental problem: never observing a
difference of potential outcomes

Open
problems




CAUSAL ML
Challenges and open questions fitting an ML model

[ tta(2) =E(¥]a] | ) |

Training data

o o-X

e o, | =m-%

— . A
conditional average potential outcome (CAPO) "
= Selection bias: parts of the population rarely
gets treated >
O
£
Challenges % B
| () = E(Y[1] - Y]0] | =) | :
conditional average treatment effect (CATE) % [
o
= Selection bias: parts of the population rarely m
gets treated

= Fundamental problem: never observing a
difference of potential outcomes

= How to effectively address selection bias?

Open
problems regularize CAPO / CATE models?

How to incorporate inductive biases, e.g.,




CAUSAL ML

Methods

- Meta-learners (Kunzel 2019) are model-agnostic methods for CATE estimation
- Can be used for treatment effect estimation in combination with an arbitrary ML model of
choice (e.g., a decision tree, a neural network)

Meta-
learners

- Model-specific methods make adjustments to existing ML models to address statistical
challenges arising in treatment effect estimation
- Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, Athey

2019)
- Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

Model-based
learners

1. Klinzel, Séren R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.

2. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.

3. Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application." Observational studies 5.2 (2019): 37-51.

4. Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.

5. Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019). 31



CAUSAL ML

Methods

- “Plug-in learners”: fit a single regression model with a treatment as an input

One-stage or two regression models for each treated and control sub-groups
learners

- Examples: S-learner and T-learner
Meta-
learners - Two-stages of learning: derive and estimate pseudo-outcomes as
Two-stage surrogates, which has the same expected value as the CATE
learners - Examples: DR-learner and R-learner

- Model-specific methods make adjustments to existing ML models to address statistical
challenges arising in treatment effect estimation

- Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, Athey
2019)

- Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

Model-based

learners

1. Klinzel, Séren R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.

2. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.

3. Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application." Observational studies 5.2 (2019): 37-51.

4. Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.

5. Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019). 32



CAUSAL ML

Methods

- “Plug-in learners”: fit a single regression model with a treatment as an input

One-stage or two regression models for each treated and control sub-groups
learners

- Examples: S-learner and T-learner
Meta-
learners - Two-stages of learning: derive and estimate pseudo-outcomes as
Two-stage surrogates, which has the same expected value as the CATE
learners - Examples: DR-learner and R-learner

- Model-specific methods make adjustments to existing ML models to address statistical
challenges arising in treatment effect estimation

- Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, Athey
2019)

- Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

Model-based
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CAUSAL ML
One-stage and two-stage meta-learners

Example: meta-learners for CATE [ 7(z) = E(Y[1] - Y[0] | ) ]

conditional average treatment effect (CATE)

Method: Using any ML model to fit relevant parts of the observed distribution, namely, nuisance functions.
Then, we can use the nuisance functions estimators for the final CATE model.

Plug-in learner

Input
Output
fio()
DA
w(x)
\ | )

fn(z) — fio(x)

——

D

7(z)

RA-learner

7(z)

DR-learner

7(z)

PW-learn

cr

7(z)

|
Step 1: Nuisance estimation

Curth, Alicia, and Mihaela Van der Schaar. "Nonparametric estimation of heterogeneous treatment effects: From theory to learning algorithms." International Conference on Atrtificial Intelligence and Statistics. PMLR, 2021.

Step 2: Post-processing

34



CAUSAL ML

Comparison of meta-learners

e )

a. Large sample size?

b

4 ™

b. Need to regularize CATE predictor?
& >/

e N

c. Strong overlap violations (e.g., patients
with certain covariates are never treated)?

-

8 N\

d. Propensity score is known (e.g., RCT) or

easy to estimate?
- 4

e ™

predicting CATE and potential outcomes?

e. Interpretability through a single model for| .

Plug-in learners

Two-step learners

S-learner

T-learner

RA-learner

|PW-learner

DR-learner

R-learner

- J

@ Beneficial for relative @ Has no influence on
performance relative performance

®

Detrimental for

relative performance

®-0-0-0-0-

&
©

-6

()
O/

O —Q
&

56

()
O/

Ve Wan
oV

@ Not available
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CAUSAL ML
Model-based learners: Representation learning

o

Example: TarNET / CFRNet for CATE | 7(z) = E(Y[1] — Y[0] | ) |

conditional average treatment effect (CATE)

Method: Learning a low-dimensional (balanced) representation ®() of high-dimensional covariates. Then, we
can fit a CATE model based on the representations.

.
>

— Training data Training data
< e H o ® -§ o - x
(O ) o - m- Q
2 o o °s
Am ®
< ° 0" 8d e " " oo
= g Ug ® | | ] | | ] Ly
>
©
o
m

Basal metabolic rate

36



CAUSAL ML

Model-based learners: Representation learning

Example: TarNET / CFRNet for CATE | 7(z) = E(Y[1] — Y[0] | ) |

conditional average treatment effect (CATE)

Method: Learning a low-dimensional (balanced) representation ®() of high-dimensional covariates. Then, we
can fit a CATE model based on the representations.

o

Body mass index

Unbalanced

Unconfounded

Balanced
Potentially confounded

Training data
o-%X
n-Q

o:' 3; e " o" oo

B(-): X — &(X)

_____
- 0

Basal metabolic rate (55 >
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A. An example of treatment effects

Confounders

Treatment

C. An illustration of heterogeneous treatment effects
F Treatment effect

Heterogeneous
treatment effects

~

Average

treatment effects

B. Comparison between estimating treatment effects from RCTs and from observational data

Randomized clinical trials

P(T=1|red)=0.5 P{T=1|blue)=0.5
-mnom

A )

=

(a)

4

Real-world observation

Neyman-Rubin causal effect

Patients’

Treatment T
features X

Outcome Y

Observed
T * v@ @0 I (Factual)
°
T + (9 b | Unobserved
(Counterfactual)

I 5 l = treatment effect

Patientsf features X

~
.

LS

Treatment T—> OutcomeY

(e)

1

Propensity score matching

P(T=1|red)=0.75 P{T=1|blue)=0.25

Inverse probability of treatment
weighting (IPTW)

P(T=1|red)=0.75 P(T=1|blue}=0.25
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f 'ﬂ‘ £ 4 f : f # 7§ Patient Characteristics

(b)

(c)
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https://www.sciencedirect.com/science/article/pii/S1532046422002611?casa_token=ZW3QExy9WhsAAAAA:HjE_pzbFMBISR7z3sd4FZ822nIc5a1hDUq06lupoxjkN-su2NctEElYrNdqR4vK9HIO8QAZepw#b0065
https://www.sciencedirect.com/science/article/pii/S1532046422002611?casa_token=ZW3QExy9WhsAAAAA:HjE_pzbFMBISR7z3sd4FZ822nIc5a1hDUq06lupoxjkN-su2NctEElYrNdqR4vK9HIO8QAZepw#b0070
https://www.sciencedirect.com/science/article/pii/S1532046422002611?casa_token=ZW3QExy9WhsAAAAA:HjE_pzbFMBISR7z3sd4FZ822nIc5a1hDUq06lupoxjkN-su2NctEElYrNdqR4vK9HIO8QAZepw#b0075
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PRIMER

Causal ML Workflow

[Define a research question & collect data QJ

1

: (i Potential cutcome ) :
l 4- 1
. o |Define a causal quantity of interest <\ \ \ !
: B ~ Patient characteristic ) :
+ D vy 1 ;
1 N e .
1 . .
: £ | Define a causal graph N '
- @—0
R P &
o HA . T sutva :
- Assess plausibility of assumptions g;ms;g:gmms ;
D )
: 1

: (" == :
- . . S !
+ S | Choose & fit treatment effect predictor .}Q, !
: ® = :
. D — .
i 3 'a N\ :
! 8 Perform checks | :
: 8 1t

[Interpret the results
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CAUSAL ML
Extensions & Open research problems

Model validity

Flexibility

Uncertainty
quantification

Selection and validation of CATE models

o Unlike traditional ML, we do not have a ground truth
validation subset

Robustness checks wrt. violation of assumptions
o Sensitivity models
o Spillover effects

Extensions to more complicated settings
o continuous / high-dimensional treatments

o time-varying potential outcomes and treatment effects
Data fusion from multiple environments

Constrained ML.: interpretability, privacy enforcement

Uncertainty quantification
o uncertainty of estimation (aka confidence intervals)
o predictive uncertainty (aka predictive intervals)

Hidden confounding
iy unconfoundedness

Outcome (Y,
>
-

Potential outcomes of patients
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EXTENSIONS & OPEN RESEARCH QUESTIONS
Model validity: Robustness checks wrt. violation of assumptions

strong assumptions

Strength of assumptions weak assumptions

S —— Potential outcomes framework sp|||over effects
trials (i) SUTVA: i.i.d. + consistency (4)=a — (¥)=Y(a) T i
€9 s @=a |—.Lack of overlap
> : (ii) positivity (overlap) O--< s (3) = of thvity
--------------------------- Y(a),Y(a')
(iii) unconfoundedness ®= T — independent of




EXTENSIONS & OPEN RESEARCH QUESTIONS

Flexibility: Causal ML for predicting outcomes over time

A

Observed factual outcomes

under (A,)~ P(A[H,)

I
1
!
I

£
Q
3!
5
O

&)

A
o] 5

v

Treatment applications

with 2 options: @&

\ | | l

-
4

under intervention ( ® ) V‘

Factual outcomes :
under (@ ®®®)~ P(A;|H;)

Counterfactual outcomes (Y4

History H, Prediction
origin

Melnychuk, Valentyn, Dennis Frauen, and Stefan Feuerriegel. "Causal transformer for estimating counterfactual outcomes." International Conference on Machine Learning. PMLR, 2022.

l | | —>
4-step ahead time ¢
prediction
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EXTENSIONS & OPEN RESEARCH QUESTIONS
Flexibility: Continuous / high-dimensional treatments

Covariates

@zm

« v "

averaged effects Effect heterogeneity individualized effects

binary average treatment effect t conditional average treatment effect

ac{0,1} | | 7=E[Y(1) - Y(0)] 5 7(z) =E[Y(1) - ¥(0) | (X)= 2]

conditional average dose-response curve B
r(z,a) = E[Y(a) | &) = ] ‘?

continuous average dose-response curve og@% _
acR 7(a) = E[Y(a)] X

Treatement type




EXTENSIONS & OPEN RESEARCH QUESTIONS
Uncertainty quantification

Potential outcomes of patients

estimate

Uncertainty of
potentlal outcomes

Pomt
estimate
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Identifying predictive biomarkers (=treatment responders)

Subgroup-level treatment effect
(patients younger than 65 years and with
body mass index less than 20)

AAA“AAA

o-X
\¥

\_

[Training data R

)

W
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VISION
Promises of Causal ML

Estimating treatment effects for vulnerable groups

Augmenting evidence
from RCTs

Finding optimal
dosages

ML for

treatment effect
estimation

Guiding treatment choice when a
standard of care is absent

Estimating post-approval
efficacy, including side effects

Estimating treatment effects
for long-term outcomes

Designing treatment
recommendations for rare diseases
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