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Abstract

Estimating counterfactual outcomes over time
from observational data is relevant for many appli-
cations (e.g., personalized medicine). Yet, state-
of-the-art methods build upon simple long short-
term memory (LSTM) networks, thus rendering

Traditionally, the gold standard for estimating the effects of
treatments are randomized controlled trials (RCTs). How-
ever, RCTSs are costly, often impractical, or even unethical.
To address this, there is a growing interest in estimating
health outcomes over time from observational data, such as,
e.g., electronic health records.

methods have been proposed for estimating

inferences for complex, long-rang
challenging. In this paper, we develop a novel
Causal T for estimating

outcomes over time. Our model is specifically
designed to capture complex, long-range depen-
dencies among time-varying confounders. For
this, we combine three transformer subnetworks
with separate inputs for time-varying covariates,
previous treatments, and previous outcomes into
a joint network with in-between cross-attentions.
We further develop a custom, end-to-end training
procedure for our Causal Transformer. Specifi-
cally, we propose a novel counterfactual domain
confusion loss to address confounding bias: it

(counterfactual) outcomes from observational data in the
static setting (van der Laan & Rubin, 2006; Chipman et al.,
2010; Johansson et al., 2016; Curth & van der Schaar, 2021;
Kuzmanovic et al., 2022). Different from that, we focus on
longitudinal settings, that is, over time. In fact, longitudi-
nal data are nowadays paramount in medical practice. For
example, almost all electronic health records (EHRs) nowa-
days store sequences of medical events over time (Allam
etal., 2021). However, estimating counterfactual outcomes
over time is challenging. One reason is that counterfactual
outcomes are generally never observed. On top of that, di-
rectly estimating counterfactual outcomes with traditional
machine learning methods in the presence of (time-varying)

aims to learn adversarial balanced

so that they are predictive of the next outcome
‘but non-predictive of the current treatment assign-
ment. We evaluate our Causal Transformer based
on synthetic and real-world datasets, where it
achieves superior performance over current base-
lines. To the best of our knowledge, this is the
first work proposing transformer-based architec-
fara for actimati " £

has a larger ization error of
(Alaa & van der Schaar, 2018a), or is even biased (in case
of multiple-step-ahead prediction) (Robins & Herndn, 2009;
Frauen et al., 2022). Instead, tailored methods are needed.

To estimate counterfactual outcomes over time, state-of-
the-art methods make nowadays use of machine learning.
Prominent examples are: recurrent marginal structural net-
works (RMSNs) (Lim et al., 2018), counterfactual recurrent
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Abstract

Existing machine learning methods for causal in-
ference usually estimate quantities expressed via
the mean of potential outcomes (e.g., average
treatment effect). However, such quantities do
not capture the full information about the distri-
bution of potential outcomes. In this work, we
estimate the density of potential outcomes after in-
terventions from observational data. For this, we
propose a novel, fully-parametric deep learning
method called Interventional Normalizing Flows.
Specifically, we combine two normalizing flows,
namely (i) a nuisance flow for estimating nuisance
parameters and (ii) a target flow for parametric es-
timation of the density of potential outcomes. We
further develop a tractable optimization objective
based on a one-step bias correction for efficient
and doubly robust estimation of the target flow pa-
rameters. As a result, our Interventional Normal-
izing Flows offer a properly normalized density
estimator. Across various experiments, we demon-
strate that our Interventional Normalizing Flows
are expressive and highly effective, and scale well
with both sample size and high-dimensional con-
founding. To the best of our knowledge, our Inter-
ventional Normalizing Flows are the first proper
fully-parametric, deep learning method for den-
sity estimation of potential outcomes.

ence from observational data promises great value, espe-
cially when experiments for determining treatment effects
are costly or even unethical.

The vast majority of the machine learning methods for
causal inference estimate averaged quantities expressed by
the (conditional) mean of potential outcomes. Examples
of such quantities are the average treatment effect (ATE)
(e.g., Shi et al., 2019; Hatt & Feuerriegel, 2021), the con-
ditional average treatment effect (CATE) (e.g., Shalit et al.,
2017; Hassanpour & Greiner, 2019; Zhang et al., 2020), and
treatment-response curves (e.g., Bica et al., 2020; Nie et al.,
2021). Importantly, these estimates only describe averages
without distributional properties.

However, making decisions based on averaged causal quan-
tities can be misleading and, in some applications, even
dangerous (Spicgelhalter, 2017; van der Bles ct al., 2019).
On the one hand, if potential outcomes have different vari-
ances or number of modes, relying on the average quantities
provides incomplete information about potential outcomes,
and may inadvertently lead to local - and not global — optima
during decision-making. On the other hand, distributional
knowledge is needed to account for uncertainty in potential
outcomes and thus informs how likely a certain outcome
is. For example, in medicine, knowing the distribution of
potential outcomes is highly important (Gische & Voelkle,
2021): it gives the probability that the potential outcome
lies in a desired range, and thus defines the probability of
treatment success or failure | Mativated hy this_we aim to
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Abstract

Counterfactual inference aims to answer retrospective “what if” questions and
thus belongs to the most fine-grained type of inference in Pearl’s causality ladder.
Existing methods for inference with i outcomes aim at
point identification and thus make strong and unnatural assumptions about the
underlying structural causal model. In this paper, we relax these assumptions
and aim at partial fe i ification of outcomes, i.e., when
the counterfactual query resides in an ignorance interval with informative bounds.
‘We prove that, in general, the ignorance interval of the counterfactual queries
has non-informative bounds, already when functions of structural causal models
i i i As a remedy, we propose a novel sensitivity
y Model. This allows us to obtain informative
bounds by bounding the curvature of level sets of the functions. We further
show that existing point counterfactual identification methods are special cases
of our Curvature Sensitivity Model when the bound of the curvature is set to
zero. We then propose an implementation of our Curvature Sensitivity Model in
the form of a novel deep generative model, which we call Augmented Pseudo-
Invertible Decoder. Our implementation employs (i) residual normalizing flows
with (ii) variational i We iri the effecti
of our Augmented Pseudo-Invertible Decoder. To the best of our knowledge, ours
is the first partial identification model for Markovian structural causal models with
continuous outcomes.
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Abstract

Estimating counterfactual outcomes over time
from observational data is relevant for many appli-
cations (e.g., personalized medicine). Yet, state-
of-the-art methods build upon simple long short-
term memory (LSTM) networks, thus rendering

Traditionally, the gold standard for estimating the effects of
treatments are randomized controlled trials (RCTs). How-
ever, RCTS are costly, often impractical, or even unethical.
To address this, there is a growing interest in estimating
health outcomes over time from observational data, such as,
e. g., electronic health records.

for complex, long:
challenging. In this paper, we develop a novel
Causal Tr for estimatil
outcomes over time. Our model is specifically
designed to capture complex, long-range depen-

s methods have been proposed for estimating
(counterfactual) outcomes from observational data in the
static setting (van der Laan & Rubin, 2006; Chipman et al.,
2010; Johansson et al., 2016; Curth & van der Schaar, 2021;
Kuzmanovic et al., 2022). Different from that, we focus on

itudinal settings, that is, over time. In fact, longitudi-

dencies among time-varying For
this, we combine three transformer subnetworks
with separate inputs for time-varying covariates,
previous treatments, and previous outcomes into
a joint network with in-between cross-attentions.
We further develop a custom, end-to-end training

for our Causal T . Specifi-
cally, we propose a novel counterfactual domain

loss to address ing bias: it

nal data are nowadays paramount in medical practice. For
example, almost all electronic health records (EHRs) nowa-
days store sequences of medical events over time (Allam
et al., 2021). However, estimating counterfactual outcomes
over time is challenging. One reason is that counterfactual
outcomes are generally never observed. On top of that, di-
rectly estimating counterfactual outcomes with traditional
machine learning methods in the presence of (time-varying)

aims to learn adversarial balanced
so that they are predictive of the next outcome
but non-predictive of the current treatment assign-
ment. We evaluate our Causal Transformer based
on synthetic and real-world datasets, where it
achieves superior performance over current base-
lines. To the best of our knowledge, this is the
first work proposing transformer-based architec-
ture for estimating counterfactual outcomes from
longitudinal data.

1. Introduction

Decision-making in medicine requires precise knowledge
of individualized health outcomes over time after applying
different treatments (Huang & Ning, 2012; Hill & Su, 2013).
This then informs the choice of treatment plans and thus
ensures effective care personalized to individual patients.

'LMU Munich, Munich, Germany. Correspondence to: Valen-
tyn Melnychuk <melnychuk@lmu.de>.

Proceedings of the 39'" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

has a larger ion error of
(Alaa & van der Schaar, 2018a), or is even biased (in case
of multiple-step-ahead prediction) (Robins & Hernén, 2009;
Frauen et al., 2022). Instead, tailored methods are needed.

To estimate counterfactual outcomes over time, state-of-
the-art methods make nowadays use of machine learning.
Prominent examples are: recurrent marginal structural net-
works (RMSNs) (Lim et al., 2018), counterfactual recurrent
network (CRN) (Bica et al., 2020), and G-Net (Li et al.,
2021). However, these methods build upon simple long
short-term memory (LSTM) networks, because of which
their ability to model complex, long-range dependencies
in observational data is limited. Long-range dependencies
are omnipresent in medical data; e. g., long-term treatment
effects have been observed for obesity (Latner et al., 2000),
multiple sclerosis (Sormani & Bruzzi, 2015), or diabetes
(Jacobson et al., 2013). To address this, we develop a Causal
sf (CT) for estimati t
over time. It is carefully designed to capture complex, long-
range dependencies in medical data that are nowadays com-
mon in EHRs.

In this paper, we aim at estimating counterfactual outcomes
over time, that is, for one- and multi-step-ahead predictions.
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Introduction: Estimating counterfactual outcomes over time

e Counterfactual prediction allows to answer individualized “what if” questions: what will
happen to the patient, if | apply alternative sequence of treatments, counterfactual’ to a

Why this is standard treatment policy

important? o  Growing opportunity to employ observational data:

o randomized controlled trials (RCTs) are costly and/or unethical
o abundance of large-scale observational data, e.g., electronic health records

Given observational dataset of:

&) time-varying covariates (e.g., blood pressure)
(V) static covariates (e.g., age)

Problem @) treatments (e.g., ventilation)

formulation v) (factual®) outcomes (e.g., respiratory frequency)

Outcome (Y,

we want to estimate counterfactual outcomes
over time starting from prediction origin for a given
sequence of treatment interventions

Factual outcomes (¥, 4

under (@@®®®)~ P(A;|H;)

Observed factual outcomes 2 — s -@ ’- L
under gé;}NIP’(A,]}_L) ' .
®
® o ®
\é‘)--’/\\__é ——————

Treatment applications

with 2 options: @

Counterfactual outcomes (¥4

under intervention (® ® ® ®)

>
History H, Prediction 4-step ahead time ¢
origin prediction

Here, potential outcomes are meant, which correspond to the interventional level of valuation in Pearl’s Hierarchy and the Foundations of Causal Inference

Factual outcomes are observed under standard treatment policy
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Introduction: Task complexity — Assumptions — Related methods

Why
estimation is
hard?

Identifiability
assumptions

( J
o
Related °
methods
o
o

Counterfactual outcomes are never directly observed in a real world

Observed history grows with time

Traditional machine learning is biased or sub-optimal in the presence of time-varying
confounding’

Consistency. If A, =3a; is a given sequence of treatments for some patient, then

Yiii]a] = Y

Sequential Overlap. There is always a non-zero probability of receiving/not receiving any
treatment, conditioning on the previous history: 0 < P(A; =a; | H; =h;) < 1

Sequential Ignorability. Current treatment is independent of the potential outcome,
conditioning on the observed history A; 1 Y 1[a;] | H;

Marginal Structural Models (MSMs) (Robins et al., 2000; Hernan et al., 2001): only linear
modelling

Recurrent Marginal Structural Networks (RMSNSs) (Lim et al., 2018): several LSTM
networks for inverse probability of treatment weights (IPTW) and prediction
Counterfactual Recurrent Network (CRN) (Bica et al., 2020): encoder-decoder LSTMS
with adversarial learning of treatment invariant representations

G-Net (Li et al., 2021): G-computation on top of LSTM

1 Time-varying confounding stands for a non-randomized treatment assignment, which depends on time-varying covariates, previous treatments and previous outcomes
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Introduction: Causal diagram & Causal query

E (.Yt+7'. [f_lt:t+r—1_] | ﬂt)

: e (individualized) expected counterfactual
T-step-ahead  sequence of pistory before outcomes over time
counterfactual treatment prediction origin

outcome interventions
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Introduction: Research gap — Our contributions

Research e Current state-of-the-art methods are built on top of long short-term memory (LSTM), thus
gap rendering inferences for complex, long-range dependencies challenging

Causal Transformer (CT) is an end-to-end model, first tailoring of transformers to a
counterfactual prediction task over time:

Our e CT captures complex, long-range dependencies between time-varying covariates,
treatments and outcomes
e CT employs a novel counterfactual domain confusion (CDC) loss to address a

time-varying confounding
e CT achieves state-of-the-art performance on synthetic, semi-synthetic & real benchmarks

contributions
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Causal Transformer: Novel architecture

2. Output — predicted outcomes under a sequence of interventions

Masked
cross-attention

Q
Maske
self-attention

K, QV

K,V

cross-attentio

ntion
K,V Q

——————---————--——'

K,Q,V

-attention
K,V Q
Mask
self-attention

----------------

[Lin:ear][un:ear][l_in?ar] [Lin:aarJ[Linfar][Lin:aar] [Linear] [Linear] [Linear] [Linear]
DHO OO ®©0 ©6 - Q.5 88
& @ Inputs / Outputs Network layer Elgment-wise )
Palient history Hy ——————————————© O—— projection horizon Y., [a(t + 1,t + 7 —1)] —> averaging / summation

1. Input — observed patient history
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Causal Transformer: Novel architecture

4. Outputs of the last block are averaged

3. Inputs are and form balanced representations
transformed with a '

stack of
multi-input blocks

Masked
cross-attention

K,V

Masked
self-attention

K,QV

5-—————---—-——--——'

A A 0 DI
-1, t t+
[ Linear ] [Linear] [Linear ] [Linear] [ Linear} [ Linear] [Linear] Linear Linear | | Linear
BHO ©OEO © e .2 o
Y. Q & @ Q'j/ Inputs / Outputs ~ Network layer Element-wise

Patient history I, ————————————0 O— Projection horizon ' laE+1,t+7-1)] —> averaging / summation

5. Each block is equipped with
self-attention, cross-attention and
feed-forward layers



Causal Transformer: Novel architecture

(b
[Linear][Lij;ar][Ljnear] [Linear][LinfarJ[Linear] [Linear] [Lir}ear] [Linear] [Lifr]
VOO OO OO ©6

Patient history H, O—— Projection horizon Y, [a(t + 1,¢ + 7 —1)] —>

K,V Q

Masked
self-attention

cross-attention
K

O

Inputs / Outputs

3

Network layer
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\---—----——---—'

OO

Element-wise
averaging / summation

7. Both treatment classifier and outcome prediction networks are used for the novel counterfactual domain

confusion loss (CDC) loss
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Causal Transformer: Counterfactual domain confusion (CDC) loss

e Idea stems from the unsupervised domain adaptation’
e CDC is an adversarial objective, which aims to

(a) make balanced representations non-predictive of the current
treatment:

e minimizing cross-entropy of current treatment wrt. [ G4
e minimizing cross-entropy between uniform treatment and output of
treatment classifier network wrt. | ct

(b) at same time, make them predictive of the outcome wrt. | cT | and
Gy | by minimizing factual MSE

e Adversarial learning is stabilized with exponential moving average (EMA
of model weights

1 Tzeng, Eric, et al. "Simultaneous deep transfer across domains and tasks." Proceedings of the IEEE international conference on computer vision (2015)
10
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Causal Transformer: Theoretical insights

e Previously proposed Gradient reversal’ (CRN, Bica et al., 2020)
extends in two ways

o We prove a theorem, similar to (CRN, Bica et al., 2020): finding a
solution to an adversarial objective of CDC loss renders distributions of
representations conditional on each treatment equal (= balanced)

e In our case, we minimize a reversed KL-divergence:

CDC loss (our paper) Gradient reversal (CRN, Bica et al., 2020)

%gﬁw)

K
PJ§($/)> Minimizing ZKL <ij)(x’)
j=1

K 1 K
Minimizing > KL <F > PP
j=1 i=1

where P?(z') is a distribution of representation conditional on treatment |

1 Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." International conference on machine learning. PMLR, 2015
11
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Experiments: Datasets — Results

e \We evaluate CT based on synthetic, (self-designed) semi-synthetic and real-world
(MIMIC-IIl) datasets
Datasets e Only synthetic and semi-synthetic data have ground-truth counterfactuals; real-world
evaluation is a proof of concept
e \We compared root-mean-squared error (RMSE) of one and multiple-step-ahead predictions

CT achieves superior performance over current baselines for benchmarks with long-range
dependencies and long prediction horizons, e.g., for semi-synthetic benchmark:

RGSUltS | =1 | ==2 T=23 T=4 T=25 T=6 T =T T=28 =9 T=10
MSMs (Robins et al., 2000) 0.37+0.01 | 0.57+0.03 0.74+0.06 0.88+0.03 1.14+0.10 195+1.48 3.44+457 > 10.0 > 10.0 > 10.0
RMSNs (Lim et al., 2018) 024 +£0.01 | 047+0.01 0.60+£0.01 0.70+0.02 0.78+0.04 0.84+0.05 089+0.06 0.94+0.08 097+0.09 1.00+0.11
CRN (Bica et al., 2020) 0.30+0.01 | 0.48+0.02 0.59+0.02 0.65+0.02 068+0.02 0.71+£0.01 0.72+001 0.74+£0.01 0.76+0.01 0.78 +£0.02
G-Net (Li et al., 2021) 0.34+0.01 | 0.67+0.03 083+0.04 094+0.04 103+£005 1.10£0.05 1.16+0.05 1.21+0.06 125+0.06 1.29+0.06
EDCT w/ GR (A = 1) (ours) | 029 +0.01 | 046+0.01 056+0.01 0.62+0.01 0.67+001 0.70+£0.01 0.72+0.01 0.74+0.01 0.76+0.01 0.78 +£0.01
CT (o = 0) (ours) ™ 020+0.01 | 0.38+0.01 045+0.01 050+0.02 052+0.02 0.55+0.02 056+002 0.58+0.02 0.60+0.02 0.61+0.02

| CT (ours) 020+0.01 | 0.38+0.01 045+0.01 0.49+0.01 0.52+0.02 0.53+0.02 0.55+0.02 0.56+0.02 0.58+0.02 0.59 +0.02 |

Lower = better (best in bold)

12
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Experiments: Ablation study

Based on synthetic datasets we evaluate different versions of CT with varying:
Ablation (a) different components within the subnetworks (positional encodings, attentional dropout)
types (b) different losses (CDC vs Gradient reversal vs no balancing, w/ vs w/o EMA of weights)
(c) single-subnetwork variant of CT vs original CT

| =1 | T=6

e Combination of end-to-end | pml e | e =4
three subnetworks ey = e

= propose § " . .
architecture and the novel w/ non-trainable PE* +£0.00 —0.02 | +0.01 —0.03
CDC loss is crucial (neither 5 | Wi absolute PE* +0.04 +0.16 | +0.15 +1.00
Results work better alone) wjo attentional Qropout* i88(3) —|—8(1)Z +882 —|—8(1)g

PPN -attention™ +0. +-0. +0. ~+0.

e Switching the backbone WIO cross-a

w/o EMA (8 = 0)* +0.03 4038 | +0.03 +0.33
from LSTM to transformer b | wio balancing (o =0; 8=099* | —0.01 —0.02 | £0.00 +0.07
and using gradient reversal w/GR (\ = 1) +0.02 40.17 | 4+0.08 +0.33
as in CRN (Bica et al., 2020) ¢ | EDCTW/GR(A=1) +0.16 40.08 | +0.05 +0.23

Lower = better;
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Open questions / Future work

- Multi-step-ahead prediction is biased with balanced representations. Theory of
bias-variance tradeoff of the G-computation or IPW methods is missing for
(individualized) expected counterfactual outcomes over time.

E (Yitr[Betrr—1] | He) = / E (Yitr | Hy, X4 1:tbr—1, Vit 1ttr—1, Bestpr—1) X
Réz x ... xRdz
t+7—1

H P (Xj}’j | Ht,)_(t+1:j—1,S’t+1:j—1,5t:j—1) dXit1:047—1 AVt 1:t47—1
j=t+1
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Abstract
Existing machine learning methods for causal in-
ference usually estimate quantities expressed via
the mean of potential outcomes (e.g., average
treatment effect). However, such quantities do
not capture the full information about the distri-
bution of potential outcomes. In this work, we
estimate the density of potential outcomes after in-
terventions from observational data. For this, we
propose a novel, fully-parametric deep learning
method called Interventional Normalizing Flows.
Specifically, we combine two normalizing flows,
namely (i) a nuisance flow for estimating nuisance
parameters and (ii) a target flow for parametric es-
timation of the density of potential outcomes. We
further develop a tractable optimization objective
based on a one-step bias correction for efficient
and doubly robust estimation of the target flow pa-
rameters. As a result, our Interventional Normal-
izing Flows offer a properly normalized density
estimator. Across various experiments, we demon-
strate that our Interventional Normalizing Flows
are expressive and highly effective, and scale well

ence from observational data promises great value, espe-
cially when experiments for determining treatment effects
are costly or even unethical.

The vast majority of the machine learning methods for
causal inference estimate averaged quantities expressed by
the (conditional) mean of potential outcomes. Examples
of such quantities are the average treatment effect (ATE)
(e.g., Shi et al., 2019; Hatt & Feuerriegel, 2021), the con-
ditional average treatment effect (CATE) (e.g., Shalit et al.,
2017; Hassanpour & Greiner, 2019; Zhang et al., 2020), and
treatment-response curves (e.g., Bica et al., 2020; Nie et al.,
2021). Importantly, these estimates only describe averages
without distributional properties.

However, making decisions based on averaged causal quan-
tities can be mi ing and, in some icati even
dangerous (Spiegelhalter, 2017; van der Bles et al., 2019).
On the one hand, if potential outcomes have different vari-
ances or number of modes, relying on the average quantities
provides incomplete information about potential outcomes,
and may inadvertently lead to local — and not global — optima
during decision-making. On the other hand, distributional
knowledge is needed to account for uncertainty in potential
and thus informs how likely a certain outcome

with both sample size and high-di i con-
founding. To the best of our knowledge, our Inter-
ventional Normalizing Flows are the first proper
fully-parametric, deep learning method for den-
sity estimation of potential outcomes.

1. Introduction

Causal inference increasingly makes use of machine learn-
ing methods to estimate treatment effects from observational
data (e.g., van der Laan et al., 2011; Kiinzel et al., 2019;
Curth & van der Schaar, 2021; Kennedy, 2022). This is
relevant for various fields including medicine (e.g., Bica
etal., 2021), marketing (e.g., Yang et al., 2020), and policy-
‘making (e.g., Hinermund et al., 2021). Here, causal infer-

'LMU Munich & Munich Center for Machine Learning
(MCML), Munich, Germany. Correspondence to: Valentyn Mel-
nychuk <melnychuk@Imu.de>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

is. For example, in medicine, knowing the distribution of
potential outcomes is highly important (Gische & Voelkle,
2021): it gives the probability that the potential outcome
lies in a desired range, and thus defines the probability of
treatment success or failure.! Motivated by this, we aim to
estimate the density of potential outcomes.

An example highlighting the need for estimating the density
of potential outcomes is shown in Fig. 1. Here, we simu-
lated outcomes according to a given structural causal model
(SCM). The potential outcomes Y [a] can be sampled by set-
ting the binary treatment to a specific value in the equation

!For example, patients with prediabetes are oftentimes treated
with metformin monotherapy, which reduces blood glucose sugar
(HbAIc) by an average of 1.1% (95% confidence interval: 0.9 to
1.3%) (Hirst et al., 2012). Yet, there is often large skewness in
the potential outcome. While metformin monotherapy is highly
effective for some individuals, it fails to achieve glycemic targets
for 50% of the patients (Shin, 2019). Here, it is indicated that a
second-line anti-diabetes drug is prescribed. Crucially, standard
confidence intervals cannot disclose that metformin is harmful to
some patients while densities can.
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Introduction: Efficient interventional density estimation

e Making decisions based 02 S

on averaged causal 0207 PYlL] =)

Why this is quantities can be g o151 F
important? misleading and, in some = o1 T 7 Y

applications, even 0.05 1 T/ \,
'. // \\

0.00 T Y T T T T T
d a n g e ro u S IS (') {1) l‘() 1'5 2'() '5 (') 5 10 15 20 : 5 (') 5 10 15 20

(Y=y|A=0) PY=y|A=1)
(Y[0] = y) . P(Y[1] =y)
Y
\

(a) (b) (c)

O =y|lA=1) P(Y[1]=y|A=0)

Y Y Y

E(Y[0]) = E(Y[1]) ~ 4.77 N | N |
var(Y[0]) = var(Y[1]) = 4.06. P{Y[l] < 5-0} ~ 0.63 IP{Y[O] < 5.0} ~ 0.51

Given observational dataset of:

(¥) covariates
oo (4) treatments ( )
roblem v) (factual) outcomes I[D(Y[a] =)= K P(Y =3 | X, A=a)
. )
formulation . \vant to flexibly and efficiently X~P(X)

estimate interventional density
(density of the potential outcomes)
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Introduction: Task complexity — Assumptions

e Traditional density estimation is non-applicable for Interventional Density Estimation
(IDE)

Wlt‘y tion i e Density is a functional, infinitely-dimensional target estimand, and, hence, standard
zs Icrlr’]?a lon 1s semi-parametric efficiency theory (with influence functions) is not applicable.
ard: e Choice of the nuisance parameters on practice: conditional expectations vs. conditional
densities?
Potential outcomes framework
e Consistency. If A =a is atreatment for some patient, then sm~ 27
T Y =Yla] Ua ) '\UXY"
|dentifiability e Positivity (Overlap). There is always a non-zero probability of Mo AT

assumptions receiving/not receiving any treatment, conditioning on the
covariates: €>0,P(1 —e>m(X) >¢) =1 Y Y
e Exchangeability (Ignorability). Current treatment is independent of A\ \ (Y
the potential outcome, conditioning on the covariates —
A 1L Y[d] | X for all .
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Introduction: Related work - Research gap — Our contributions

Method Parametric Estimator type Efficiency wrt. Base density model Proper density Universal
Kim et al. (2018) semi-parametric A-IPTW L4 distance kernel density estimation (KDE) X v
Rel ated Muandet et al. (2021) non-parametric plug-in — distributional kernel mean embeddings (DKME) X v
meth od S Kennedy et al. (2023) semi- / fully-parametric =~ A-IPTW moment condition exponential family v/ X
truncated series (TS) X v
INFs (this paper) fully-parametric A-IPTW moment condition normalizing flows (NFs) v v

A-IPTW: augmented inverse propensity of treatment weighted

Research e Existing methods for IDE are either non- or semi-parametric. Our work is the first to propose
gap a universal fully-parametric, deep learning method for IDE, with proper density.

Interventional Normalizing Flows (INFs) are first proper fully-parametric, deep learning method for
interventional density estimation:

e We extend the results of (Kennedy et al., 2023) and derive a tractable optimization problem
Our with a one-step bias correction for efficient and doubly robust estimation. This allows for an
contributions effective two-step training procedure.
e We demonstrate in various experiments that INFs are highly expressive and effective. A
major advantage owed to the parametric form is that our INFs scale well to both large and
high-dimensional datasets.
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INFs: Semi-parametric IDE (Kennedy et al., 2023)

One-step (semi-parametric) IDE estimators
Target: interventional density. P(Yla] =y) = XN%(X)(P(Y =y | X,A=a))

e Plug-in estimator:
PP(Y[a] =y) =P.{P(Y =y | X,A=a)}.

Two-step (semi-parametric) IDE estimators
Target: projection parameters B, = argmin KL (P(Y[a]) || 9(:; Ba)) = arg min
T(Y;Ba) = =V, logg(Y;Ba) ' '
e Covariate-adjusted estimator:

PCA(Y[a] = y) = g(y; ) WP (B,) = E T(Y%B.) =0
YonP, {P(Y|X,A=a)}

e Augmented inverse propensity of treatment weighted (A-IPTW) estimator:
PATFTW (Y [a] = y) = g(y; BATPTV) WAV (8,) = 1 (Ba) +Pu{ $a(T(Y; Ba)i )} = 0.

¢a(T; P) = ]lg:j(j()a)

<T _E(T | X,A= a,)) +ET|X,A=a)~ E (E(T|X,A=a))

LMU MUNICH SCHOOL OF MANAGEMENT

E (—logg(Y*pa)).

YanP(Y[a])
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INFs: Novel efficient optimization objective

Proposed by
(Kennedy et al., 2023)

Our idea

m

QA-IPTW
Ba

RATPTV(8.) = P (B,) +Pn{da(T(Y; Ba); P)} = 0

= arg min
Ba

E ( —log g(Y'*; 60,))

Yen~P, {P(Y|X,A=a)}

>4

v o

cross-entropy loss

—Pn{l(A =) (1ogg(Y;ﬁa) — E (logg(Y;Ba)))}]

o (X) Y~B(Y|X,A=a)

\ - -

N~
one-step bias correction
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INFs: Novel architecture

Nuisance flow Target flow a
e NF / =

g5 CNF (5 - v 7 1~ N0,1) jet>] ---- <-_>(f7a>,\, pA-IPTW(Y[a])].... @

v Z 1~ N(0,1 e e A~ . . ! .

YRy e @] . e |
B S £ One-step bias

| @ CE correction @

FCz AA(X) LNLL —

@_ +?a: L ':\Z— ‘, ~ N(0,1) |<—> 9@\ 5 ]ID(Y|X, o a)}H @
FC, £ i G)__> Nuisance flow _)@ e
(1 a I
 ® | @O || = |
|

Nuisance flow I Target flow !



Experiments: Datasets — Results

Datasets

Results

LMU MUNICH SCHOOL OF MANAGEMENT

We evaluate INFs based on 1 synthetic, 77 + 24 + 2 semi-synthetic and 1 real-world

datasets

Only synthetic and semi-synthetic data have ground-truth potential outcomes; real-world
evaluation is a proof of concept
We compared test log-probability for each potential outcome (higher is better)

ACIC 2016 (77 datasets) | ACIC 2018 (24 datasets)

% best;, % bestyy % best;, % best
TARNet* 3.90% 6.23% 7.08% 7.50%
MDNs 28.96% 29.35% | 21.25% 18.75%
CNF [= INFs w/o target flow] 14.42% 1597% | 14.17% 14.58%
KDE (Kim et al., 2018) 1.04% 1.04% | 10.42% 9.58%
DKME (Muandet et al., 2021) 0.39% 0.78% 8.75% 10.83%
CNF+TS (Kennedy et al., 2023) 8.18% 8.96% 5.83% 5.42%
INFs w/o bias corr 5.45% 7.27% 4.58% 5.42%
| INFs (main) 37.66% 30.39% | 27.92% 27.92%

Higher = better (best in bold)

0.030

0.025

0.020 -

0.015 -

0.010 -

0.005

0.000

INFs achieve superior performance and scales well:
ACIC datasets

California Tobacco Control Study

Nknots, T = 5

== P(Y =y|A=0)
PY=y|A=1)
PINFs (Y [0] = y)
PINFs (Y [1] = )

0.030

0.025

0.020

0.015

0.010

0.005

Nknots, T = 10

-=- P(Y=y|A=0)
P(Y =y|A=1)

— PNV =)
BINF(Y 1] = y)

T T T T T T
50 100 150 200 250 300
y, per-capita cigarette sales from 1970 to 2000 (in packs)

0.000

T T T T — T T
50 100 150 200 250 300
y, per-capita cigarette sales from 1970 to 2000 (in packs)

22



LUDWIG-

MAXIMILIANS- LMU MUNICH
UNIVERSITAT SCHOOL OF INSTITUTE OF ARTIFICIAL
MUNCHEN (UL PXCIS S Al INTELLIGENCE (Al) IN MANAGEMENT

Open questions / Future work

- Multi-dimensional outcomes IDE: fundamentally different from the ATE estimation
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Abstract

Counterfactual inference aims to answer retrospective “what if” questions and
thus belongs to the most fine-grained type of inference in Pearl’s causality ladder.
Existing methods for inference with i outcomes aim at
point identification and thus make strong and unnatural assumptions about the
underlying structural causal model. In this paper, we relax these assumptions
and aim at partial i fication of outcomes, i.e., when
the counterfactual query resides in an ignorance interval with informative bounds.
‘We prove that, in general, the ignorance interval of the counterfactual queries
has non-informative bounds, already when functions of structural causal models
are continuously differentiable. As a remedy, we propose a novel sensitivity
model called Curvature Sensitivity Model. This allows us to obtain informative
bounds by bounding the curvature of level sets of the functions. We further
show that existing point counterfactual identification methods are special cases
of our Curvature Sensitivity Model when the bound of the curvature is set to
zero. We then propose an implementation of our Curvature Sensitivity Model in
the form of a novel deep generative model, which we call Augmented Pseudo-
Invertible Decoder. Our implementation employs (i) residual normalizing flows
with (ii) variati ions. We empiri the effe

of our Augmented Pseudo-Invertible Decoder. To the best of our knowledge, ours
is the first partial identification model for Markovian structural causal models with
continuous outcomes.

1 Introduction

Counterfactual inference aims to answer retrospective “what if” questions. Examples are: Would a
patient’s recovery have been faster, had a doctor applied a different treatment? Would my salary
be higher, had I studied at a different college? Counterfactual inference is widely used in data-
driven decision-making, such as root cause analysis [14, 123], reccommender systems [12, 31, 72],
responsibility attribution [42, 63, 6], and personalized medicine 72, 122]. Counterfactual inference
is also relevant for various machine learning tasks such as safe policy search [92], reinforcement
learning (13,132,153, 75, [77], algorithmic fairness [63, 89, [130], and explainability [3%, 36, 52, 53].

Counterfactual queries are located at the top of Pearl’s ladder of causation [5, 43, 86], i.e., at the
third layer £ of causation [3] (see Fig.[l, right). Counterfactual queries are challenging as they do
reasoning in both the actual world and a hypothetical one where variables are set to different values
than they have in reality.

State-of-the-art methods for counterfactual inference typically aim at point identification. These
works fall into two streams. (1) The first stream [16, 24, 26, 60, 73, 85,197, 98, [101, (102, 118,
119, [124] makes no explicit assumptions besides assuming a structural causal model (SCM) with

Preprint. Under review.
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Introduction: Counterfactual identification in Markovian SCMs

Why this is
important? o

Problem
formulation

Counterfactual inference is widely used in data-driven decision-making: it aims to answer
retrospective “what if” questions

Counterfactual identifiability is only possible with unnatural or unrealistic assumptions (e.g.
monotonicity of the functions in the Markovian SCMs)

Given observational dataset of:
4) treatments
v) (factual) outcomes

Qa —>a( ) — ]E‘AA(YCL | a’,ay/);

we want to perform a partial identification of the expected counterfactual outcome of
[un]treated ECOU [ECOT]

Causal diagrams G(M) Ladder of causation

’
' M 1) M / M /
U4 (EM(Ya | o, 9)| | EM(Y. | o)) EM(Ya | @)
\ U A ) AR RN % expected counterfactual expected counterfactual expected potential
& R /_\& 47N S outcome of [un]treated outcome /\ outcome of [un]treated L 3 Counterfactual
(/D G\\) f/ a } : Yl , AI d-separation in parallel
/ e . / » ¢ worlds network
VRN
1 U ’ - .
Wy AR AEREN Markovianit
’ S | s expected Y g
\r T # N I < Uy2p s nolentiakoutcome Lo Interventional
s 2 ==l o g ,
Y i Y - s i

Bayesian network ' Causal Bayesian network Parallel worlds network

conditional
expectation

L1 Observational
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Introduction: Task complexity — Related work

Why this is
hard?

Related work

Counterfactual queries in general are not identifiable from both L1 and L2 data even for

Markovian SCMs.

Partial identification of L3 discrete outcomes / L2 continuous outcomes does not

LMU MUNICH SCHOOL OF MANAGEMENT

Symbolic
identifiability

Point identification methods

Partial identification methods

Discrete outcomes

| Continuous outcomes

Always via back-
door criterion [5]

Deep generative models [64,128]

Do-calculus & rules
of probability [47,
6&,104]

Potential outcomes framework | 10,23,
114] ; binary IV [33,/46,[115] ; proxy
variables [74, 7¥]

Partially observed back-
/front-door variables [7(];
canonical SCM [12(]

No-assumptions bound
[76]; MSM [11, 30, §1,
52,:83,1110]; confounding
functions [13, 93]; noisy
proxy variables [41]; IV
[40, 146, ISR, [12€]; ATD
|3]; clustered DAGs |84]

Parallel worlds net-
works [2, 105], coun-
terfactual unnesting
theorem [22]

Deep generative models [16, 24, 160,
RS, 197, QR 1101, 1102] ; Markovian
BGMs [50, 56, 179, R0, 107, 137] ;
transport-based counterfactuals [27]

ETT [103] ; path-specific effects [10€,
13(1] ; deep generative models [26,
73,1115 111€ 1124] ; semi-Markovian
BGMs [7¢]

PN, PS, PNS [4, 69, 71,
KK, [111]; response func-
tions framework / canoni-
cal partitioning [4, 82,19€,
1211125 11261127, [131];
causal marginal problem
[38, 99]; deep twin net-
works [113]

CSM (this paper)

Future work (see dis-
cussion in Appendix [H);
ANMs with hidden con-
founding [5¢]

generalize
Layer | M/SM
M
=
=
=
=
[}
E SM
=
N
Q
E
§ M
t.u
Q
=
=
3
s SM
Q
Legend:

o M/SM: Markovian SCM (M), semi-Markovian SCM (SM)
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Introduction: Assumptions - Motivating example

-y

e Bivariate Markovian SCMs with functions of class C*k and d-dimension T

latent noise: B(C¥, d) N

i M = <U7V7]P)(U)7~F> o Eoan

Assumptions U = {Ua € {0,1},Uy € [0,1]*} F={fa(Ua), fv(4,Uv)} C? It
V={Ac{0,1},Y €R}, P(U):Us~Bemn(pa), 0<ps<l (v

e ECOU [ECOT] is non-identifiable

Example 1 (Counterfactual non-identifiability in Markovian SCMs). Let M1 and My be two
Markovian SCMs from B(C°, 2) with the following functions for Y :

Motivating M; : fy(A, Uy, Uyz) =A (Uyl — Uy2 + 1) 1 (]. — A) (Uyl + Uy2 — 1)},
example
Uyl—|—UY2—]., AZO,
Mz : fy (A, Uy1,Uy2) = Uyr — Uy2 + 1, A=1AN0< Uy <1 AUy <Uy2<1),
F~Y0,Uy1,Uy2), otherwise,
where F~1(0, Uy, Uy2) is the solution in'Y of the implicitly defined function F(Y,Uy1,Uy2) =
Uyr —Uy2 —2(Y = 1) |-Uy1 —Uy2+ 1| =14+ +/(Y —2)2(8(Y —1)2+1) = 0.
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Introduction: Motivating example (continued)

(j)\ill(o) =1

L1 Observational inference = L5 Interventional inference L 3 Counterfactual inference
3
: 1. Abduction : 2. Action ; 3. Prediction
P(Oy1,0y2 | 4" =0,Y' = 0). do(a = 1) :
L 10 ! 1 '// ' [PMI(Yazl =y| A,=0,Y’=0) ]
0.2 0S8 1 (). ’, 1
1 - | 15
0.6 4 0.6 L0 '
Ml S 0.4 ~ 04 ' 04 *I“
0.2 0.2 E 0 ., H 0]
0.0 0.0 r v T : 0.0 T T T N = 5 e
000 025 05 075 L0 i 000 025 050 075 100! 10 -05 00 05 10 15
Uy : A : :
________________________________________ B i i o
"“ - ¢ N  (PM2(aci =y1 4/ =0,Y'=0) ]
0.8 0 , 08 S
0.6 0.6 0.6 : i
: 0. S 0 : 1 % I 5 "‘
Mo ! l o N > |
i 021 021 —N : ‘ J
0.0 i . - 0.0 . ' - | 0.0 v - T \ : T y %
000 025 050 075 100 000 025 050 075 100 ! 000 025 050 075 100 1 =L0: =08: 40 ek A0 A3 20
Uy Uy : Uy
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Introduction: Research gap — Our contributions

Research gap

Our
contributions

We are the first to propose a sensitivity model
for partial counterfactual identification of
continuous outcomes in Markovian SCMs.

We prove that the expected counterfactual
outcome of [un]treated has non-informative
bounds in the class of continuously
differentiable functions of SCMs.

We propose a novel Curvature Sensitivity
Model (CSM) to obtain informative bounds. Our
CSM is the first sensitivity model for the partial
counterfactual identification of continuous
outcomes in Markovian SCMs.

We introduce a novel deep generative model
called Augmented Pseudo-Invertible Decoder
(APID) to perform partial counterfactual
inference under our CSM. We further validate it
numerically.

Counterfactual query with continuous outcome

Y

L3 symbolic
identifiability?
Yes

Y

Point identification with
probabilistic
expressions (e.g., ETT,

path-specific effects) | Yes

Point identification with
functional class restrictions
(e.g., BGMs, transport-based
counterfactuals)

Partial identification
(our Curvature

Sensitivity Model)
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Partial Counterfactual Identification - Non-Informative Bounds

1
M _ _ d—1
Observational P (Y =Y | a) — / ||V f (a T )” dH (UY)
distribution as a E(y,a) Il Vuy JY " %Y /2
pushforward where E(y, a) is a level set (preimage) of y, i.e., E(y,a) = {uy € [0,1]% : fy(a,uy) = y}, and

H Y (uy) is the Hausdorff measure (see Appendix for the definition).

Mim : fy (A, Uy1,Uy2) = fy (Uy1,Uy2) = \/—2log(Uy1) cos(nUy=)

. 08 < N(y;0,1)
Example (Box-Muller % o ] S
. 8 vy 031
transformation) N —_— ]

change of _ _ 1
Solution for d=1 variables formula: By =y|a) Z Vuy fr(a, uy )]

(BGMs) wr €B 0
+ monotonicity assumption:  fy (a,uy) = F, " (fuy F 0.5 + 0.5)
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Partial Counterfactual Identification - Non-Informative Bounds

1 6(fy(a,uy) —y)
PM(Ya =y | a,y/) = / A (uy),
PMY =y [ a) Jew o) Vuy fr(a’, uy)ll;
Counterfactual 1 o )
queries as _ EM(Y, / y(a,uy d7d-1
pushforwards Qo) =BT (Y d'y) = PMY =y | ') Jew o) [Vuy fr (@, uy)ll, ]
where E(y',d’) is a (factual) level set of i/, i. e., E(y',a') = {uy €[0,1]%: fy(a’,uy) = v’} and
a’ # a.
+ monotonicity assumption:
Solution for d=1 Q- _m( Y =TF, ' (£Fq (y') 0.5+ 0.5)

(BGMs)
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Partial Counterfactual Identification - Non-Informative Bounds

Partial counterfactual
identification of
ECOU [ECOT]

Non-informative
bounds

Constrained variational problem, which involves partial derivatives and
Hausdorff integrals:

woay) =  inf st 1}:P(Y | @) = PM(Y

Quoal®) = inf, QML) st Va€{0,1}:P(Y|a) =PM(Y | a)

Qu—ay)= sup QM. (¢) stVac{0,1}:PY |a)=P"(Y |a)
MeB(CF,d)

Theorem 1 (informal). The ignorance . 98
interval for the partial identification of the 041

ECOU [ECOT] has non-informative B3 e o o o o
bounds for SCMs with functions C*k for 0.0 —— ’

0.00 0.25 0.50 0.75 1.00
every K. Uy

fY(a7 Uy]_ ) Uy2)
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CSM: Assumption Kappa - Informative bounds

e (Informal) we assume thatk =20 is
the upper bound of the absolute
curvature for the level sets.

Assumption kappa

1 Vuy fy(a,uy) )
wiluy) = =<V ( -
(Wr) = =5V \ [W., fr(@un)l
Partial
identification °
with informative
bounds

functions C”k for every k > 1.
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Theorem 2 (informal). Under Assumption kappa, the ignorance interval for the
partial identification of the ECOU [ECOT] has informative bounds for SCMs with
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CSM: Identification spectrum

Partial identification
Point identification

§
1
Non-informative : Informative :
i i
(- . | N) S
(r : | N || E
(N i
* M inf (Theorem 1) | | * Mcurv (Example 6) % .
B(C, d) : TI4 ? * Mperp (Example 8) E * Mg+ (Example 7) % T
k ) :(- mm 5 2 I E ..?g
5 . ~ i s E ' £ -
: L] L] i »w o : = 5
) 2 i ) I(. =] O O : § dﬁ
~ — 1 ~—
e(C’ ,d) = CSM (k = 00) : ! D o X
| >
@(Cl, d) (Lemma1,Lemma2) |, * My, (Example 2) 'BGMs % M. (Example 5) ) ks
) ! ©
I =
0 : * M o (Example 1) ' -
@(C ;d) 1 1.2 | ) =
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APID: Novel deep generative model

B TP T

2 on

~ N(g A( )a € 2) - i

Y 4 < - :
_ ( 1)~ Unif O, 1 ] .................
t1 Residual N Y O

e < : :
A U,,21~ Unif(0, 1) ] F I SR —
L iy @ [
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APID: Training

' ) Co 0y s g
D R Voot \Jaug)~ N(g* (y),€%) AR
'O 0 Wy 11~ Unif(0,1) | ' @@+ A U
jir— Y ) P I H 1
g O L Ji 158 3 Residual N e
1 > 1 1 I a: | 20909090 ] | amm miemne \
= .8 _ | Z‘ [ g : ﬂa, 1
® 8 N oyl 1 8 ] L
; % V= \Uy21~ Unif(0,1) |, | g. : ol } 1y 2}
Z = (¢)
=Y -4 d
-~ - !
e 1D -
= o ; ;‘f:“; ' (ﬁny—
s Lo~ sy '@ Residual N
T : . ( Yl'NUnlf(O,l) ! |‘.E T NS mmmmm- \
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8 SEPEE | 1] =
R - = L Pa . Bpey = ) A < i
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Connections e Losses D ot A : WUy1)
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Experiments: Datasets — Results

e We evaluate INFs based on 2 synthetic datasets, but even there we do not assume GT
SCMs

{Y|0~IP’(Y|0)=N(0,1)
Y |1~B(Y |1)=N(0,1)

Datasets
Y | 0 ~P(Y | 0) = Mixture(0.7 N(—0.5,1.52) + 0.3 N(1.5,0.52)),
Y | 1~ ]P’(Y | 1) = Mixture(0.3 N(—2.5, 0.352) +04 N(O.5, 0.752) + 0.3 N(2.0, 0.52))
APID is consistent with BGMs
P(Y |0) =P(Y | 1) = N(0,1) P(Y | 0) = Mixture,(Y) — P(Y' | 1) = Mixture, (Y)
Results TS LA - :
I . i =l
= 2 0 APID(\, =0.5) —m— APID()\. =5.0) -- BGMs
Q;’ i ;/t/+\+\+ QT- N /+ ~#— APID(A, =1.0) —gp— APID(A. =10.0) — [i},a]
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Open questions / Future work

- More intuition / Connections to a real world

('UX‘, MSM (T)

-~

- Combination with Marginal Sensitivity Model for

potential outcomes framework (i.e. semi-Markovian ,-.

SCMs). Ta) (- )
: 2=
- Sharp bounds under CSM (APID does not Y 4
guarantee tight bounds). <A}}—> - Uy e




