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Introduction: Estimating counterfactual outcomes over time 

Problem 
formulation

Given observational dataset of:
- time-varying covariates (e.g., blood pressure)
- static covariates (e.g., age)    
- treatments (e.g., ventilation) 
- (factual2) outcomes (e.g., respiratory frequency) 

we want to estimate counterfactual outcomes 
over time starting from prediction origin for a given 
sequence of treatment interventions

Why this is 
important?

● Counterfactual prediction allows to answer individualized “what if” questions: what will 
happen to the patient, if I apply alternative sequence of treatments, counterfactual1 to a 
standard treatment policy

● Growing opportunity to employ observational data:
○ randomized controlled trials (RCTs) are costly and/or unethical
○ abundance of large-scale observational data, e.g., electronic health records

1 Here, potential outcomes are meant, which correspond to the interventional level of valuation in Pearl’s Hierarchy and the Foundations of Causal Inference
2 Factual outcomes are observed under standard treatment policy
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Introduction: Task complexity – Assumptions – Related methods

● Marginal Structural Models (MSMs) (Robins et al., 2000; Hernan et al., 2001): only linear 
modelling

● Recurrent Marginal Structural Networks (RMSNs) (Lim et al., 2018): several LSTM 
networks for inverse probability of treatment weights (IPTW) and prediction

● Counterfactual Recurrent Network (CRN) (Bica et al., 2020): encoder-decoder LSTMS 
with adversarial learning of treatment invariant representations

● G-Net (Li et al., 2021): G-computation on top of LSTM 

Related 
methods

Why 
estimation is 
hard?

● Counterfactual outcomes are never directly observed in a real world
● Observed history grows with time
● Traditional machine learning is biased or sub-optimal in the presence of time-varying 

confounding1

● Consistency.  If       is a given sequence of treatments for some patient, then 

● Sequential Overlap.  There is always a non-zero probability of receiving/not receiving any 
treatment, conditioning on the previous history:

● Sequential Ignorability. Current treatment is independent of the potential outcome, 
conditioning on the observed history

Identifiability 
assumptions

1 Time-varying confounding stands for a non-randomized treatment assignment, which depends on time-varying covariates, previous treatments and previous outcomes
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Introduction: Causal diagram & Causal query

(individualized) expected counterfactual 
outcomes over time
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Introduction: Research gap – Our contributions

Causal Transformer (CT) is an end-to-end model, first tailoring of transformers to a 
counterfactual prediction task over time:
● CT captures complex, long-range dependencies between time-varying covariates, 

treatments and outcomes
● CT employs a novel counterfactual domain confusion (CDC) loss to address a 

time-varying confounding   
● CT achieves state-of-the-art performance on synthetic, semi-synthetic & real benchmarks 

Our 
contributions

Research 
gap

● Current state-of-the-art methods are built on top of long short-term memory (LSTM), thus 
rendering inferences for complex, long-range dependencies challenging 
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Causal Transformer: Novel architecture

1. Input – observed patient history

2. Output – predicted outcomes under a sequence of interventions
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Causal Transformer: Novel architecture

3. Inputs are 
transformed with a 
stack of 
multi-input blocks

4. Outputs of the last block are averaged 
and form balanced representations

5. Each block is equipped with 
self-attention, cross-attention and 
feed-forward layers
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Causal Transformer: Novel architecture

6. We place treatment classifier network and outcome prediction network on top of balanced representations

7. Both treatment classifier and outcome prediction networks are used for the novel counterfactual domain 
confusion loss (CDC) loss
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Causal Transformer: Counterfactual domain confusion (CDC) loss

● Idea stems from the unsupervised domain adaptation1

● CDC is an adversarial objective, which aims to
(a) make balanced representations         non-predictive of the current 
treatment:
● minimizing cross-entropy of current treatment wrt.
● minimizing cross-entropy between uniform treatment and output of 

treatment classifier network wrt.  
(b) at same time, make them predictive of the outcome wrt.          and
     by minimizing factual MSE

● Adversarial learning is stabilized with exponential moving average (EMA) 
of model weights

1 Tzeng, Eric, et al. "Simultaneous deep transfer across domains and tasks." Proceedings of the IEEE international conference on computer vision (2015)



11

Causal Transformer: Theoretical insights

● Previously proposed Gradient reversal1 (CRN, Bica et al., 2020) 
extends in two ways

● We prove a theorem, similar to (CRN, Bica et al., 2020): finding a 
solution to an adversarial objective of CDC loss renders distributions of 
representations conditional on each treatment equal (= balanced)

● In our case, we minimize a reversed KL-divergence:

where       is a distribution of representation conditional on treatment j

1 Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." International conference on machine learning. PMLR, 2015

CDC loss (our paper) Gradient reversal (CRN, Bica et al., 2020)

Minimizing Minimizing 
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Experiments: Datasets – Results

Datasets

● We evaluate CT based on synthetic, (self-designed) semi-synthetic and real-world 
(MIMIC-III) datasets

● Only synthetic and semi-synthetic data have ground-truth counterfactuals; real-world 
evaluation is a proof of concept

● We compared root-mean-squared error (RMSE) of one and multiple-step-ahead predictions

Results

CT achieves superior performance over current baselines for benchmarks with long-range 
dependencies and long prediction horizons, e.g., for semi-synthetic benchmark:  
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Experiments: Ablation study

Based on synthetic datasets we evaluate different versions of CT with varying:
(a) different components within the subnetworks (positional encodings, attentional dropout)
(b) different losses (CDC vs Gradient reversal vs no balancing, w/ vs w/o EMA of weights)
(c) single-subnetwork variant of CT vs original CT

Results

Ablation 
types

● Combination of end-to-end 
three subnetworks 
architecture and the novel 
CDC loss is crucial (neither 
work better alone)

● Switching the backbone 
from LSTM to transformer 
and using gradient reversal 
as in CRN (Bica et al., 2020) 
gives worse results
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Open questions / Future work
- Multi-step-ahead prediction is biased with balanced representations. Theory of 

bias-variance tradeoff of the G-computation or IPW methods is missing for 
(individualized) expected counterfactual outcomes over time.
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Introduction: Efficient interventional density estimation 

Problem 
formulation

Given observational dataset of:
- covariates
- treatments 
- (factual) outcomes 

we want to flexibly and efficiently 
estimate interventional density 
(density of the potential outcomes)

Why this is 
important?

● Making decisions based 
on averaged causal 
quantities can be 
misleading and, in some 
applications, even 
dangerous
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Introduction: Task complexity – Assumptions

17

Why 
estimation is 
hard?

● Traditional density estimation is non-applicable for Interventional Density Estimation 
(IDE)

● Density is a functional, infinitely-dimensional target estimand, and, hence, standard 
semi-parametric efficiency theory (with influence functions) is not applicable.

● Choice of the nuisance parameters on practice: conditional expectations vs. conditional 
densities?

Potential outcomes framework
● Consistency.  If       is a treatment for some patient, then

 
● Positivity (Overlap).  There is always a non-zero probability of 

receiving/not receiving any treatment, conditioning on the 
covariates:

● Exchangeability (Ignorability). Current treatment is independent of 
the potential outcome, conditioning on the covariates 

Identifiability 
assumptions
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Introduction: Related work - Research gap – Our contributions

Interventional Normalizing Flows (INFs) are first proper fully-parametric, deep learning method for 
interventional density estimation:
● We extend the results of (Kennedy et al., 2023) and derive a tractable optimization problem 

with a one-step bias correction for efficient and doubly robust estimation. This allows for an 
effective two-step training procedure.

● We demonstrate in various experiments that INFs are highly expressive and effective. A 
major advantage owed to the parametric form is that our INFs scale well to both large and 
high-dimensional datasets. 

Our 
contributions

Research 
gap

● Existing methods for IDE are either non- or semi-parametric. Our work is the first to propose 
a universal fully-parametric, deep learning method for IDE, with proper density. 

Related 
methods
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INFs: Semi-parametric IDE (Kennedy et al., 2023)

One-step (semi-parametric) IDE estimators
Target: interventional density. 

● Plug-in estimator: 

Two-step (semi-parametric) IDE estimators
Target: projection parameters

● Covariate-adjusted estimator:

● Augmented inverse propensity of treatment weighted (A-IPTW) estimator:



20

INFs: Novel efficient optimization objective

Our idea

Proposed by 
(Kennedy et al., 2023)
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INFs: Novel architecture
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Experiments: Datasets – Results

Datasets

● We evaluate INFs based on 1 synthetic, 77 + 24 + 2 semi-synthetic and 1 real-world 
datasets

● Only synthetic and semi-synthetic data have ground-truth potential outcomes; real-world 
evaluation is a proof of concept

● We compared test log-probability for each potential outcome (higher is better)

Results

INFs achieve superior performance and scales well: 
ACIC datasets California Tobacco Control Study



Please use the light grey closing slide for presentations that are printed.

INSTITUTE OF ARTIFICIAL 
INTELLIGENCE (AI) IN MANAGEMENT

Open questions / Future work
- Multi-dimensional outcomes IDE: fundamentally different from the ATE estimation
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Introduction: Counterfactual identification in Markovian SCMs 

Problem 
formulation

Given observational dataset of:
- treatments 
- (factual) outcomes 

we want to perform a partial identification of the expected counterfactual outcome of 
[un]treated ECOU [ECOT]

Why this is 
important?

● Counterfactual inference is widely used in data-driven decision-making: it aims to answer 
retrospective “what if” questions

● Counterfactual identifiability is only possible with unnatural or unrealistic assumptions (e.g. 
monotonicity of the functions in the Markovian SCMs)
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Introduction: Task complexity – Related work

Why this is 
hard?

● Counterfactual queries in general are not identifiable from both L1 and L2 data even for 
Markovian SCMs.

● Partial identification of L3 discrete outcomes / L2 continuous outcomes does not 
generalize 

Related work
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Introduction: Assumptions - Motivating example 

Motivating 
example

● ECOU [ECOT] is non-identifiable 

● Bivariate Markovian SCMs with functions of  class C^k and d-dimension 
latent noise:

Assumptions
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Introduction: Motivating example (continued) 
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Introduction: Research gap – Our contributions

● We prove that the expected counterfactual 
outcome of [un]treated has non-informative 
bounds in the class of continuously 
differentiable functions of SCMs.

● We propose a novel Curvature Sensitivity 
Model (CSM) to obtain informative bounds. Our 
CSM is the first sensitivity model for the partial 
counterfactual identification of continuous 
outcomes in Markovian SCMs.

● We introduce a novel deep generative model 
called Augmented Pseudo-Invertible Decoder 
(APID) to perform partial counterfactual 
inference under our CSM. We further validate it 
numerically.

Our 
contributions

Research gap
● We are the first to propose a sensitivity model 

for partial counterfactual identification of 
continuous outcomes in Markovian SCMs. 
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Partial Counterfactual Identification - Non-Informative Bounds

Solution for d=1 
(BGMs)

Observational 
distribution as a 
pushforward

Example (Box-Müller 
transformation)

+ monotonicity assumption: 

change of 
variables formula: 
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Partial Counterfactual Identification - Non-Informative Bounds

Counterfactual 
queries as 
pushforwards

Solution for d=1 
(BGMs)

+ monotonicity assumption:  
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Partial Counterfactual Identification - Non-Informative Bounds

Partial counterfactual 
identification of 
ECOU [ECOT]

● Constrained variational problem, which involves partial derivatives and 
Hausdorff integrals: 

Non-informative 
bounds

● Theorem 1 (informal). The ignorance 
interval for the partial identification of the 
ECOU [ECOT] has non-informative 
bounds for SCMs with functions C^k for 
every k. 
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CSM: Assumption Kappa - Informative bounds

Assumption kappa

● (Informal) we assume that κ ≥ 0 is 
the upper bound of the absolute 
curvature for the level sets.

Partial 
identification 
with informative 
bounds

● Theorem 2 (informal). Under Assumption kappa, the ignorance interval for the 
partial identification of the ECOU [ECOT] has informative bounds for SCMs with 
functions C^k for every k > 1. 
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CSM: Identification spectrum
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APID: Novel deep generative model
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APID: Training
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Experiments: Datasets – Results

Datasets

● We evaluate INFs based on 2 synthetic datasets, but even there we do not assume GT 
SCMs

Results

APID is consistent with BGMs
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Open questions / Future work
- More intuition / Connections to a real world

- Combination with Marginal Sensitivity Model for 
potential outcomes framework (i.e. semi-Markovian 
SCMs).

- Sharp bounds under CSM (APID does not 
guarantee tight bounds).


