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Introduction: Estimating counterfactual outcomes over time 
Why this is important?

● Counterfactual prediction allows to answer 
individualized “what if” questions: what will happen 
to the patient, if I apply an alternative sequence of 
treatments, counterfactual to a standard treatment 
policy

● Here, potential outcomes are meant, which 
correspond to the interventional level of valuation 
in Pearl’s Hierarchy of Causal Inference1 

● Growing opportunity to employ observational data:
○ randomized controlled trials (RCTs) are costly 

and/or unethical
○ abundance of large-scale observational data, 

e.g., electronic health records

1 Bareinboim, Elias, et al. "On Pearl’s hierarchy and the foundations of causal inference." Probabilistic and causal inference: the works of Judea Pearl. 2022. 507-556.
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Introduction: Estimating counterfactual outcomes over time 

Given observational dataset of:
- time-varying covariates (e.g., blood pressure)
- static covariates (e.g., age)    
- categorical treatments (e.g., ventilation) 
- (factual*) outcomes (e.g., respiratory 

frequency) 
we want to estimate expected counterfactual 
outcomes over time starting from prediction origin 
for a given sequence of treatment interventions:

For that, we aim to learn a function 

Problem formulation

*Factual outcomes are observed under standard treatment policy.

     -step-ahead 
counterfactual 

outcome

history before 
prediction origin

sequence of 
treatment 

interventions
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Introduction: Assumptions 

● Consistency.  If       is a given sequence of treatments for some patient, then 

● Sequential Overlap.  There is always a non-zero probability of receiving/not receiving any treatment, 
conditioning on the previous history:

● Sequential Ignorability. Current treatment is independent of the potential outcome, conditioning on the 
observed history

Identifiability assumptions
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Introduction: Task complexity

● Fundamental problem of causal inference: 
counterfactual outcomes are never directly observed in a real world

● Traditional machine learning to learn   is either sub-optimal (one-step-ahead prediction) or biased 
(multiple-step-ahead prediction) in the presence of time-varying confounding

● Observed history grows with time: 
○ existing reinforcement literature is non-applicable as this is a non-Markovian setting
○ existing literature for cross-sectional setting, e.g. individual treatment effect (ITE) / conditional average 

treatment effect (CATE), also falls short 

● Although the causal effect is identifiable, i.e., with G-Computation formula, it is unclear, how to leverage a 
bias-variance tradeoff and computational complexity:  

Why estimation is hard?
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Introduction: Related methods

● Marginal Structural Models (MSMs) (Robins et al., 2000; Hernan et al., 2001) 
○ Base models: linear models wrt. a fixed window taken from history
○ Estimation: (1) propensity score estimation; (2) pseudo-outcome regressions, with IPTW weighted 

trajectories

● Recurrent Marginal Structural Networks (RMSNs) (Lim et al., 2018)
○ Base models: 2 propensity LSTMs, encoder LSTM, decoder LSTM 
○ Estimation: (1) propensity score estimation; (2) pseudo-outcome regressions, with IPTW weighted 

trajectories

● Counterfactual Recurrent Network (CRN) (Bica et al., 2020)
○ Base models: encoder LSTM, decoder LSTM 
○ Estimation: balanced representations via gradient reversal

● G-Net (Li et al., 2021)
○ Base models: time-varying covariates and outcome LSTM
○ Estimation: sampling-based G-computation

Related methods
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Introduction: Research gap – Our contributions

Causal Transformer (CT) is an end-to-end model, first tailoring of transformers to a 
counterfactual prediction task over time:
● CT captures complex, long-range dependencies between time-varying covariates, 

treatments and outcomes

● CT employs a novel adversarial counterfactual domain confusion (CDC) loss to address 
a time-varying confounding   

● CT achieves state-of-the-art performance on synthetic, semi-synthetic & real benchmarks 

Our 
contributions

Research 
gap

● Current state-of-the-art methods are built on top of long short-term memory (LSTM), thus 
rendering inferences for complex, long-range dependencies challenging 
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Causal Transformer: Novel architecture
CT is a single end-to-end model for both one- and multiple-step-ahead prediction
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Causal Transformer: Novel architecture

1. Input – observed patient history

2. Output – predicted outcomes under a sequence of interventions
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Causal Transformer: Novel architecture

3. Inputs are 
transformed with a 
stack of 
multi-input blocks

4. Outputs of the last block are averaged 
and form balanced representations

5. Each block is equipped with 
self-attention, cross-attention and 
feed-forward layers
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6. Each transformer block receives and outputs 3 parallel sequences of hidden states. 
I.e., there CT has 3 subnetworks, and the information between them is shared via 
cross-attentions

12

Causal Transformer: Novel architecture
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Causal Transformer: Novel architecture

7. We place treatment classifier network and outcome prediction network on top of balanced representations

8. Both treatment classifier and outcome prediction networks are used for the novel counterfactual domain 
confusion loss (CDC) loss
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Causal Transformer: Novel architecture
Other details

● Each transformer block is minimal1  and combines
○ (i) multi-head self-/cross-attention with residual connections
○ (ii) feed-forward layer with residual connections
○ (iii) layer normalization

● We employed attentional dropout2, analogously to the recurrent dropout in LSTMs.

● In every self- and cross-attention, we use trainable relative positional encodings3, which:
○ considers the order of treatments, outcomes and time-varying covariates relatively to the prediction 

origin. E.g., they allow us to distinguish sequences such as, e. g., <treatment A → side effect → 
treatment B> from <treatment A → treatment B → side-effect> 

○ allow for better generalization to unseen sequence length by dropping the order information for the 
distant past

● Mini-batch augmentation with masking is used to enable multi-step-ahead prediction, where future 
time-varying covariates are unavailable

1 Dong, Yihe, Jean-Baptiste Cordonnier, and Andreas Loukas. "Attention is not all you need: Pure attention loses rank doubly exponentially with depth." International Conference on    
Machine Learning. PMLR, 2021.

2 Zehui, Lin, et al. "DropAttention: a regularization method for fully-connected self-attention networks." arXiv preprint arXiv:1907.11065 (2019).

3 Shaw, Peter, Jakob Uszkoreit, and Ashish Vaswani. "Self-attention with relative position representations." arXiv preprint arXiv:1803.02155 (2018).
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Causal Transformer: Counterfactual domain confusion (CDC) loss

● Idea stems from the unsupervised domain adaptation1

● CDC is an adversarial objective, which aims at same time to:

1 Tzeng, Eric, et al. "Simultaneous deep transfer across domains and tasks." Proceedings of the IEEE international conference on computer vision (2015)

CDC loss
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Causal Transformer: Counterfactual domain confusion (CDC) loss

● Idea stems from the unsupervised domain adaptation1

● CDC is an adversarial objective, which aims at same time to:
(a) make balanced representations         non-predictive of the current 
treatment 

1 Tzeng, Eric, et al. "Simultaneous deep transfer across domains and tasks." Proceedings of the IEEE international conference on computer vision (2015)

CDC loss
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Causal Transformer: Counterfactual domain confusion (CDC) loss

● Idea stems from the unsupervised domain adaptation1

● CDC is an adversarial objective, which aims at same time to:
(a) make balanced representations         non-predictive of the current 
treatment 
● by minimizing cross-entropy of current treatment wrt.

1 Tzeng, Eric, et al. "Simultaneous deep transfer across domains and tasks." Proceedings of the IEEE international conference on computer vision (2015)

CDC loss
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Causal Transformer: Counterfactual domain confusion (CDC) loss

● Idea stems from the unsupervised domain adaptation1

● CDC is an adversarial objective, which aims at same time to:
(a) make balanced representations         non-predictive of the current 
treatment 
● by minimizing cross-entropy of current treatment wrt.
● by minimizing cross-entropy between uniform treatment and output 

of treatment classifier network wrt.  

1 Tzeng, Eric, et al. "Simultaneous deep transfer across domains and tasks." Proceedings of the IEEE international conference on computer vision (2015)

CDC loss
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Causal Transformer: Counterfactual domain confusion (CDC) loss

● Idea stems from the unsupervised domain adaptation1

● CDC is an adversarial objective, which aims at same time to:
(a) make balanced representations         non-predictive of the current 
treatment 
● by minimizing cross-entropy of current treatment wrt.
● by minimizing cross-entropy between uniform treatment and output 

of treatment classifier network wrt.  
(b) make balanced representations     predictive of the outcome          

1 Tzeng, Eric, et al. "Simultaneous deep transfer across domains and tasks." Proceedings of the IEEE international conference on computer vision (2015)

CDC loss
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Causal Transformer: Counterfactual domain confusion (CDC) loss

● Idea stems from the unsupervised domain adaptation1

● CDC is an adversarial objective, which aims at same time to:
(a) make balanced representations         non-predictive of the current 
treatment 
● by minimizing cross-entropy of current treatment wrt.
● by minimizing cross-entropy between uniform treatment and output 

of treatment classifier network wrt.  
(b) make balanced representations     predictive of the outcome          
● minimizing factual MSE wrt. and  

1 Tzeng, Eric, et al. "Simultaneous deep transfer across domains and tasks." Proceedings of the IEEE international conference on computer vision (2015)

CDC loss
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Causal Transformer: Counterfactual domain confusion (CDC) loss

● Idea stems from the unsupervised domain adaptation1

● CDC is an adversarial objective, which aims at same time to:
(a) make balanced representations         non-predictive of the current 
treatment 
● by minimizing cross-entropy of current treatment wrt.
● by minimizing cross-entropy between uniform treatment and output 

of treatment classifier network wrt.  
(b) make balanced representations     predictive of the outcome          
● minimizing factual MSE wrt. and  

● Adversarial learning is further stabilized with exponential moving 
average (EMA) of model weights

1 Tzeng, Eric, et al. "Simultaneous deep transfer across domains and tasks." Proceedings of the IEEE international conference on computer vision (2015)

CDC loss
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Causal Transformer: Theoretical insights
● Previously proposed gradient reversal1 (CRN, Bica et al., 2020) 

extends in two ways:
○ if badly chosen hyperparameter -> representation may be predictive 

of opposite treatment
○ gradients vanish, if treatment classifier network learns too fast

● We prove a theorem, similar to (CRN, Bica et al., 2020): finding a 
solution to an adversarial objective of CDC loss renders distributions of 
representations conditional on each treatment equal (= balanced)

● In our case, we minimize a reversed KL-divergence:

where       is a distribution of representation conditional on treatment j

1 Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." International conference on machine learning. PMLR, 2015

CDC loss (our paper) Gradient reversal (CRN, Bica et al., 2020)

Minimizing Minimizing 
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Experiments: Datasets – Baselines

Datasets

● We evaluate CT based on:
○ synthetic datasets based on pharmacokinetic-pharmacodynamic model of tumor growth

○ self-designed semi-synthetic dataset based on MIMIC-III dataset

○ real-world dataset (MIMIC-III)

● Only synthetic and semi-synthetic data have ground-truth counterfactuals; real-world 
evaluation is a proof of concept

● We compared root-mean-squared error (RMSE) of one and multiple-step-ahead predictions. 
For multiple-step-ahead we sampled a fixed number of random counterfactual trajectories

Baselines 
● Marginal Structural Models (MSMs) (Robins et al., 2000; Hernan et al., 2001)
● Recurrent Marginal Structural Networks (RMSNs) (Lim et al., 2018)
● Counterfactual Recurrent Network (CRN) (Bica et al., 2020)
● G-Net (Li et al., 2021)
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Experiments: Results

● CT achieves superior performance over current baselines for benchmarks with long-range 
dependencies and long prediction horizons, e.g., for semi-synthetic benchmark: 

● Among all the neural models, our CT has the smallest runtime, due to single-stage training procedure 
with CDC loss and usage of self-attention: 

Results
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Experiments: Ablation study

Based on synthetic datasets we evaluate different versions of CT with varying:
(a) different components within the subnetworks (positional encodings, attentional dropout)
(b) different losses (CDC vs Gradient reversal vs no balancing, w/ vs w/o EMA of weights)
(c) single-subnetwork variant of CT (EDCT) vs original CT

Results

Ablation 
types

● Combination of end-to-end 
three subnetworks 
architecture and the novel 
CDC loss is crucial (neither 
work better alone)

● Simply switching the backbone 
from LSTM to transformer and 
using gradient reversal as in 
CRN (Bica et al., 2020) gives 
worse results

● CDC loss also improves the 
performance of CRN
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Source Code: 
github.com/Valentyn1997/

CausalTransformer 
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Conclusion
We proposed a novel, 
state-of-the-art method: the 
Causal Transformer which is 
designed to capture complex, 
long-range patient trajectories 

It combines a custom 
subnetwork architecture to 
process the input together with a 
new counterfactual domain 
confusion loss for end-to-end 
training

ArXiv Paper: 
arxiv.org/abs/2204.07258  

https://github.com/Valentyn1997/CausalTransformer
https://github.com/Valentyn1997/CausalTransformer
https://arxiv.org/abs/2204.07258
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Extended related work
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Attention primer

2. Attention weights and scores:

● w/o relative positional encoding

● w/ relative positional encoding

1. Linear transformations:

3. Multi-head attention:
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Encoder-Decoder Causal Transformer: Architecture
Two separate transformers, i.e., encoder and decoder, for each task of one- and multiple step ahead predictions 


