
Conditional Normalising Flows for
Interpretability

Valentyn Melnychuk

Munich 2021

Conditional Normalising Flows for
Interpretability

Valentyn Melnychuk

Master Thesis

MSc Data Science

Department of Statistics

Faculty of Mathematics, Informatics and Statistics

at Ludwig-Maximilian University of Munich

Written by

Valentyn Melnychuk

from Kyiv, Ukraine

Munich, 21.03.2021

First supervisor: PhD Candidate Gunnar König

External supervisor: Univ.-Prof. Dr.-Ing. Moritz Grosse-Wentrup

Affiliated supervisor: Prof. Dr. Bernd Bischl

Day of oral examination: 22.04.2021

Declaration of Independence

I hereby confirm that I have written the accompanying thesis

”Conditional Normalising Flows for Interpretability”

by myself, without contributions from any sources other than those cited in the
text and acknowledgements. This applies also to all graphics, drawings, maps and
images included in the thesis.

Munich, 21.03.2021

Valentyn Melnychuk Place & Date

v

Contents

Declaration of Independence v

Abstract ix

Acknowledgements x

Abbreviations & Notation xi

1 Introduction 1

2 Related work 3

3 Methods 4
3.1 Interpretability Methods . 4

3.1.1 Relative Feature Importance 5
3.1.2 Shapley Additive Global Importance 6

3.2 Density Estimation . 8
3.2.1 General Task . 8
3.2.2 Model Selection . 9

3.3 Deep Conditional Density Estimators 13
3.3.1 Conditional Normalising Flows 13
3.3.2 Mixture Density Networks . 18
3.3.3 Categorical & Mixed Estimation 18

4 Evaluation and Results 20
4.1 Datasets with Known Causal Graph 22

4.1.1 Structural Causal Models Datasets 25
4.1.2 Semi-synthetic and Real Datasets 26
4.1.3 RFI Results . 27
4.1.4 SAGE Results . 34

4.2 Sensetive Attributes . 37
4.2.1 RFI Results . 37

5 Conclusion & Discussion 40

References 41

Appendix 45
A.1 RFI for Multiple Linear Regression 45
A.2 Gradient-descent MLE with Noise Regularisation 47

vii

Table of Contents

A.3 Radial flow . 48
A.4 Evaluation protocol . 50
A.5 Markov-Blanket conditional distribution 50
A.6 Pairwise scatter-matrices for datasets with known causal DAG 51
A.7 CNF and MDN results reproduction for UCI benchmark 53

viii

Abstract

This work aims to fill the gap of two existing interpretability methods for global
feature importance (Relative feature importance (RFI) and Shapley additive global
importance (SAGE)), by using deep conditional density estimator/sampler – Condi-
tional Normalising Flow. To our knowledge, it is the first usage of Normalising Flows
in the scope of feature importance estimation. We argue, that they are superior to
other deep and classical density estimators, as they allow to efficiently evaluate likeli-
hood, make a model selection and sample synthetic data, while not overfitting. After
utilising noise regularisation, we discovered, that they do not require a rigorous hy-
perparameter search and could be used in the vanilla setting. We make an extensive
empirical evaluation on different synthetic and real datasets with the help of a self-
designed evaluation benchmark. Ground-truth feature importances are in general
intractable, thus we inherited the concepts of strong and weak feature relevance,
which have one-to-one relation to the causal structure of data generating mecha-
nism. By utilising continuous datasets with a known causal graph, we can reason
about the validity of estimated importances. Additionally, we provided a use case of
RFI for detection of influence of sensitive attributes, when they are included in pre-
dictive modelling or completely ignored. In the end, this thesis extends the existing
Python library for Relative Feature Importance (https://github.com/gcskoenig/rfi),
with Conditional Normalising Flow and Mixture Density Network (an alternative
deep learning method), as well as with the synthetic benchmark for future studies.

ix

https://github.com/gcskoenig/rfi

Acknowledgments

I (Valentyn Melnychuk) express deep gratitude to my supervisors: Gunnar König
for the fruitful cooperation, weekly meetings and discussions, continuous ideas ex-
change and communication, for the code for interpretability methods and cross-
review of code under RFI library development; Prof. Moritz Grosse-Wentrup
for succinct comments and recommendations, regarding the directions of research.

I am thankful to Amit Fenn for the LATEXtemplate [16].

x

Abbreviations & Notation

Abbreviations:

- CDE – Conditional Density Estimation
- CDF – Cumulative Density Function
- CFI – Conditional Feature Importance
- CNF – Conditional Normalising Flow
- DAG – Directed Acyclic Graph
- GoF – Goodness-Of-Fit
- GP – Gaussian Process
- HD – Hellinger Distance
- i.i.d. – Identically Independently Distributed
- JSD – Jensen-Shanon Divergence
- KLD – Kullback–Leibler Divergence
- MAE – Mean Absolute Error
- MB – Markov Blanket
- MC – Monte Carlo
- MDN – Mixture Density Network
- ML – Machine Learning
- MLE – Maximum Likelihood Estimation
- MSE – Mean Squared Error
- NF – Normalising Flow
- NLL – Negative Log-Likelihood
- NN – Neural Network
- PDF – Probability Density Function
- PFI – Permutation Feature Importance
- RFI – Relative Feature Importance
- SAGE – Shapley Additive Global importancE
- SCM – Structural Causal Model
- SHAP – SHapley Additive exPlanations

Notation:

- X, Y, Z – random variables (capital letters)
- x, y, z – realisation of random variable / datapoint
- Xi, Yj – index of random variable, feature (subscript)
- x(i), y(i) – index of datapoint (superscript)
- p, p(x), p(x/y), pZ(z) – distribution / probability density function (depending

on context)
- Xi ∼ p(x) – sampling from the distribution of X
- X,X∗, y – design matrices and target vector for Multiple Linear Regression
- fθ(x) - parametric probabilistic model with parameters θ

xi

Section 1

Introduction

Machine learning (ML) interpretability methods are designed to explain predictive
models. While there exist intrinsically interpretable methods, like decision trees
or generalised linear models, more advanced ”black-box” models lack an intuitive
understanding of their individual predictions or how features contribute to their
performance. Many methods were designed for specific ML models (Random Forest
Explainer [22; 36], Class Activation Mapping [63] etc.), but in this thesis we focus
on post-hoc model-agnostic methods for interpretability. Post-hoc means, that
an interpretability method is applied to an already fitted model - on post-processing
step, and model-agnosticism implies that a method could be applied to any predic-
tive model.

Other important division in ML interpretability hierarchy is between global
and local methods. A local method tries to explain feature contributions of a
single prediction, while a global tells features importance for the overall model’s
performance. One should also distinguish feature importance, which scores how
much feature contributes to performance/prediction variance, and feature effect
visualise the quantity of the relationship between features and target. Here, we
specifically pay attention to global methods, which estimate feature importance,
but some work can also be extended to local ones (e.g. from SAGE to SHAP, see
Section 3.1.2).

Many recent ML interpretability methods rely on the crucial step of sampling
from the conditional distribution of some features, conditioning on others. This adds
an extra issue of conditional density estimation. Originally, many simplifying as-
sumptions were made to simplify explanation generation, like the gaussianity of data
or conditional independence of features. But recent papers discover that the mis-
specification of a density estimator could lead to misleading and false explanations
of interpretability methods. This is regarded as the off-manifold explanations
problem (see Section 2).

This work tries to fill the gap of conditional density estimation (CDE) for inter-
pretability with means of normalising flows, a relatively new branch of generative
deep learning models. They allow for general and flexible conditional density esti-
mation, with the possibility to easily sample from complex distributions and have a
tractable density, which simplifies the task of the model selection among estimators.
It has some other great properties, like a possibility to control the support of dis-
tribution or access to cumulative density function or quantile function. We provide
an extensive comparison of existing density estimators in Section 3.3.

1

1. Introduction

This work extends the Relative Feature Importance (RFI) [27] (a global inter-
pretability method) to deal with non-Gaussian data. Also, we extend Shapley addi-
tive global importance (SAGE) [12] to work correctly with conditionally dependent
features. In Section 4 we evaluate the performance of different CDE estimators on
different synthetic, pseudo-real and real datasets on our own developed benchmark,
both in terms of goodness-of-fit and validity of explanations, induced by different
estimators. Furthermore, we study the influence of the CDE misspecification in the
case of sensitive attributes influence.

We extend the basic functionality of nflows library [15] (a comprehensive col-
lection of normalizing flows using PyTorch), by introducing conditional transforma-
tions, where parameters are taken from contextual neural networks outputs. The
final models (MDN or CNF) are then trained in an end-to-end fashion. Finally, we
incorporate different conditional density estimators to the RFI Python library to
boost further usage of this interpretability method.

2

https://github.com/gcskoenig/rfi

Section 2

Related work

Many interpretability methods, while generating synthetic data, are using simplified
assumptions, which in general do not hold. For example Relative Feature Importance
[27] experiments only with multivariate Gaussian data with linear regression.

Authors of Shapely-based explanations (SHAP) [30] or SAGE [12] also unreal-
istically assumed independence of features and used sampling from marginal dis-
tribution. By violation of this assumption, synthetic data sampler can produce
completely unrealistic combinations of features – off-manifold data, which results
in misleading explanations. Many descending papers addressed this issue. [17] pro-
poses to use variational autoencoder, with the additional masked context encoder.
As VAE has an intractable density of generated data points, it is hard to make a
samplers selection. [1] employs different simple density estimators, such as condi-
tional Gaussian distribution, Gaussian copula or kernel estimate. [32] uses a special
similarity function for existing train data to estimate SHAP.

3

Section 3

Methods

This chapter has a three-fold structure: first, we discuss two interpretability meth-
ods, which require the generation of synthetic data, sampled from conditional distri-
bution. In the second part, we introduce the task of conditional density estimation
(CDE) and sampling. At last, we overview different state-of-the-art deep-learning
approaches for CDE.

3.1 Interpretability Methods

As it was already mentioned in the Introduction 1, interpretability methods fall into
two categories: global and local. In this thesis, we solely concentrate on two methods
for global model-agnostic feature importances: Relative Feature Importance (RFI)
and Shapley additive global importance (SAGE).

Starting with a common notation for both methods, let’s assume Y is a target
random variable and variables XR are used as training features (here R is an indexing
set). We use a training data, sampled i.i.d. from a joint distribution of (Y,XR):

D = {(y(1), x
(1)
R), ..., (y(n), x

(n)
R)}. We then fit a predictive model by minimising an

empirical risk on the D, defined by some inner loss l(·, ·):

h∗ = argmin
h∈H

RDemp(Y, h(XR)) RDemp =
1

n

n∑
i=1

l

[
y(i), h(x

(i)
R)

]
(3.1)

where {h ∈ H} is a predicitive models class. The main object of global interpretabil-
ity is a generalisation risk R of model g∗, meaning the expected value of some
loss for all possible values (Y,XR):

R = E(Y,XR)

[
l
(
Y, h∗(XR)

)]
(3.2)

On practice, true generalisation risk is usually estimated with empirical risk (e.g.

on the hold-out test subset: D∗ = {(y(1), x
(1)
R), ..., (y(n∗), x

(n∗)
R)}).

The interpretability research poses a question: how can we measure the indi-
vidual or collective contributions of features to the generalisation risk. While RFI
estimates individual importance, conditioning on some context, SAGE tries to de-
rive additive individual importances, which approximately restore collective contri-
butions.

4

3.1 Interpretability Methods 5

3.1.1 Relative Feature Importance

Let’s first introduce a slightly different notation (see Figure 3.1), as originally pro-
posed in [27]. Three methods (Permutation Feature Importance (PFI) [8], Condi-
tional Feature Importance (CFI) [50] and Relative feature importance (RFI) [27])
check the individual importance of some feature Xj in different contexts. The main
principle here is to introduce some kind of feature perturbation, one calls it a re-
placement variable X̃j, which is completely independent of the target. Thus, it
aims to destroy an existing relationship to Y . We can define the risk of permuted
feature as:

R̃j = E(Y,X−j ,X̃j)

[
l
(
Y, h∗(X̃j, X−j)

)]
(3.3)

We define a feature importance as the difference of risk for perturbed data and
original risk:

FIj = R̃j −R (3.4)

PFI evaluates the importance of feature j ∈ R after applying a random permu-
tation of a respective feature. By independent shuffling of feature values, Xj one
wants to destroy the relationship between target sample Y and Xj. Permutation is
actually equivalent to the sampling from the marginal distribution: X̃j ∼ p(xj).

G
R

j

R
G∗G

Figure 3.1: Venn diagram for
PFI/RFI/CFI notation. j ∈ R is a
feature of interest, R is a set of training
features, G is conditioning set for
RFI. We mark the set of all predictive
features but not j with −j = R \ j.

Simple permutation can bring a bias – in
cases when the feature is dependent on other
train features. This has been referred as off-
manifold problem (more detailed in Section
2). Imagine a dummy example with a medical
dataset, when we have dependent features ’Sex ’
and ’Number of pregnancies ’. After permuting
the ’Sex ’ feature we could generate completely
unrealistic datapoints. Also, PFI can overesti-
mate the importance of correlated features.

On the other hand, CFI uses a sample from
the conditional distribution, given all the other
training features: X̃j ∼ p(xj/x−j). Here, the
context is taken as from the actual test sample:
x−j = x

(i)∗
−j . The interpretation of conditional

feature importance is the ultimate individual contribution of feature if we know
all the other variables values. So CFI for the perfectly correlating features will be
zero, as conditional sampling is changed to a deterministic assignment and no actual
perturbation is introduced to Xj.

Relative feature importance [27] was introduced as a ”spectral” continuation
between PFI and RFI. We also want to calculate conditional importance, but now a
set of conditioning variables G can range from an empty set (same as PFI) to a full
−j (=CFI). We can even add some features, which were missing or omitted during
predictive model training – G∗.

RFIGj = R̃j/G −R R̃j/G = E(Y,X−j ,X̃G
j)

[
l
(
Y, h∗(X̃G

j , X−j)
)]

where X̃G
j is a replacement variable, sampled from a X̃G

j ∼ p(xj/xG), independently

from target Y and all the other variables R.

5

3. Methods

In practice, we can only estimate ground-truth RFI with its Monte-Carlo esti-

mate on the test subset: R̂FI
G

j . We can infer RFI analytically only under a very
restricted model class – Multiple Linear regression, and specific risk, defined by a
mean squared error (MSE).

Proposition 1. Let the risk 3.2 be defined via MSE-loss l(y, g(xR)) = (y − xR)2.
Target Y is defined via a conditional linear regression formula: Y/XR = βTXR +
ε, where ε ∼ N(0, σ2). Let’s denote a given train D and test data D∗ as design
matrices:

X,X∗ ∼ p(XR) X ∈ Mat(n× r) X∗ ∈ Mat(n∗ × r)
y = Xβ + ε y∗ = X∗β + ε ε ∼ N(0, σ2I)

Then, under a mild condition: X∗TX∗
n∗ ≈ XTX

n
= Ĉov(XR) and by increasing

n, the RFI for the model with MLE-estimated parameters: hβ̂(XR) = β̂TXR, β̂ =

(XTX)−1XTy:
RFIGj ≈ 2β2

i (Var(Xj)− Cov(X̃G
j , Xj)) (3.5)

where X̃G
j is sampled from some conditional distribution X̃G

j ∼ p(xj/xG).
In the case of XR having a multivariate Gaussian distribution XR ∼ N(µXR ,ΣXR),

X̃G
j being sampled from true conditional distribution and G ⊆ R:

RFIGj ≈ 2βi
(
Σjj − ΣjGΣ−1

GGΣGj

)
(3.6)

where Σjj,ΣjG,ΣGj,ΣGG is a partitioning of matrix ΣXR.

Proof. See the Appendix A.1.

Immediately, we can see how this result relates to the PFI and CFI. For PFI re-
placement variable is sampled independently of original data sample, so Cov(X̃G

j , Xj) =
0 and feature importance reaches its highest value: PFIj ≈ 2β2

i (Var(Xj)). Con-
versely, in case of feature j being a linear combination of features fromG: Cov(X̃G

j , Xj) =
Var(Xj) and importance tends to zero.

R

S

S

Figure 3.2: Venn dia-
gram for SAGE nota-
tion. S ⊆ R is a set of
features of interest, R is
a set of training features,
S = R \ S.

Unfortunately, as we practically never know the true con-
ditional distribution, we replace it with the estimated sam-
pler. Original RFI paper [27] experimented only with the
multivariate Gaussian data and used model-X knockoffs [9]
to estimate samplers parameters (which is equivalent to es-
timation and sampling from the conditional Gaussian distri-
bution in case of RFI). Thus, the research gap arises – which
is the main aim of the thesis.

3.1.2 Shapley Additive Global Importance

Shapley Additive Global Importance (SAGE) was in-
troduced by [12], as a global version of the local method
SHapley Additive exPlanations (SHAP) [30]. SHAP and
SAGE answer a different question: what is a collective im-
portance of feature subsets. Unlike perturbation-based meth-
ods, where we change the individual features in the original

6

3.1 Interpretability Methods 7

dataset to destroy relations with a target variable, SAGE deals with marginalising
predictions and compares it with the full model. Authors introduced a concept of
reduced model. Let’s say, we are interested in the importance of subset S ⊆ R of
features and S = R \ S. One defines a model, restricted on S, as:

h∗S(xS) = EXS∼p(xS/xS) h
∗(xS, XS) (3.7)

which is in fact the mean prediction of the model after marginalisation of XS,
conditionally on XS. So intrinsically, we are also conditionally ”perturbing” features
in XS and using them to calculate the mean prediction of the model. In this regard,
SAGE is similar to the CFI (the only difference is that CFI averages generalisation
risks of the original model on original and perturbed data and SAGE does it for
original and restricted models).

Now we want to compare the risk between the average prediction (= model
reduced on empty set, which e.g. outputs the mean of Y) and model, reduced on S:

vh∗(S) = E(Y,XR)

[
l
(
Y, h∗∅(X∅)

)]
− E(Y,XR)

[
l
(
Y, h∗S(XS)

)]
= R̃∅ − R̃S (3.8)

we call this reduction in risk over the mean prediction.
As there is an exponential number of different possible subsets w.r.t. number of

features, SAGE and SHAP proposed to look for some kind of additive importance
of individual features, which should approximate ground truth vh∗(S):

uh∗(S) = φ0 +
∑
i∈S

φi (3.9)

where φi are the individual assignments of feature importances. This importance can
also be viewed from game theoretic perspective, where we want to find an optimal
(in some sense) credit allocation scheme for the game with several players. In terms
of interpretability, players are features and the game is reduction in risk, defined
via 3.8. The Shapely values are such a unique credit allocation, which satisfies
5 optimality properties (efficiency, symmetry, dummy, monotonicity and linearity)
and can be expressed in a closed form expression:

φi =
1

r

∑
S⊆R\{i}

(
r − 1

|S|

)−1(
vh∗(S ∪ {i})− vh∗(S)

)
(3.10)

Shapely values provide interesting and intuitive properties of feature sets impor-
tances (more detailed in original paper [12]).

The inference of exact Shapely values was studied for SHAP in [56]. The authors
showed that computation of SHAP is intractable even for simple predictive models,
such as logistic regression.

The original work on SAGE proposed a sampling-based approximation algo-
rithm, which internally used sampling from p(xS/xS). Authors made a simplifying
assumption, that p(xS/xS) = p(xS), similarly as in SHAP paper. As this was al-
ready addressed in 2, this could lead to the off-manifold problem. Our work tries to
eliminate this drawback and sample from properly estimated p(xS/xS).

7

3. Methods

3.2 Density Estimation

Learning a probabilistic model of data to create a realistic synthetic sample can
always be framed as the task of density estimation. In this section, we discuss the
existing methods for parametric density estimation, which also allow us to sample
new data from estimated models. First, we introduce the general task of density
estimation for unconditional and conditional distributions, then we discuss possible
goodness-of-fit measures and their interpretations. Furthermore, we list possible
solutions to overcome the overfitting problem.

3.2.1 General Task

Unconditional distribution. Let the X be a random variable of dimensionality
dx and p(x) – a probability density function (PDF) of X, defined over domain X ⊆
Rdx (continuous) or X ⊆ Ndx (discrete). One calls a set supp(p) = {x ∈ X : p(x) > 0}
– the support of p(x). Given an i.i.d. sample from unknown p(x): D = {x(1), ..., x(n)}
(can be also marked as X(i) ∼ p(x)), the goal is to find a good estimate f̂(x) (model,
estimator). In deep learning context, one often calls it a generative model. Depend-
ing on the downstream task, one can also ask for possibility of sampling from model
X̃ ∼ f̂(x) or the computability of cumulative density function (CDF): F̂X(x).

In parametric estimation f̂(x) comes from some parametric family: F =
{fθ(x) : θ ∈ Θ}. The optimal θ̂ is usually selected via Maximum likelihood
estimation (MLE), which tries to maximize the likelihood of data D:

θ̂MLE = argmax
θ∈Θ

n∑
i=1

log fθ(x
(i)) (3.11)

It can be shown, that the maximisation objective in 3.11 is equivalent to the
minimization of Monte Carlo estimate of Kullback–Leibler (KL) divergence between
the data generating PDF and model’s PDF:

argmin
θ∈Θ

KL(p||fθ) = argmin
θ∈Θ

EX∼p(x)

[
log

p(X)

fθ(X)

]
=

= argmin
θ∈Θ

EX∼p(x)

[
log p(X)

]
− EX∼p(x)

[
log fθ(X)

]
=

= argmax
θ∈Θ

EX∼p(x)

[
log fθ(X)

]
≈
[
MC estimate, using D

]
= argmax

θ∈Θ

1

n

n∑
i=1

log fθ(x
(i))

(3.12)

where EX∼p(x)

[
log(p(X))

]
= H(X) is a constant (differential) entropy and thus

ignored while minimisation and log p(x) is by convention 0, if p(x) = 0.
By choosing the optimal f̂ = fθ̂ with KL-divergence minimisation objective 3.12,

we actually find a projection of data PDF on the selected model’s class F . This is
also referred as moment projection or M-projection [35].

Conditional distribution. Let (X, Y) be the pair of possibly multivariate ran-
dom variables (continuous or discrete) with the dimensionality dx and dy respec-
tively. Let p(y/x) = p(y, x)/p(x) be the conditional density of Y . The task of uncon-
ditional distribution estimation could be simply generalised to conditional case: hav-
ing a training data from joint distribution p(y, x) – D = {(y(1), x(1)), ..., (y(n), x(n))},

8

3.2 Density Estimation 9

0.0 0.5 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Data PDF

0.0 0.5 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M-projection (∼ MLE)

0.0 0.5 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L-projection

0.0 0.5 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

JS-divergence projection

Figure 3.3: Fitting isotropic 2-d Gaussian distribution fθ(·) ∼ N((µ0, µ1)T , σI) to non-Gaussian
data PDF. Original PDF is a mixture of two Gaussian densities (leftmost image). One could
observe, how different objectives (KL-divergence, reverse KL-divergence and JS-divergence) and
respective projections (M-, L- and JSD) favour different fit properties.

the aim is to find a conditional estimator f̂(y/x), without the direct estimation of
marginal distribution p(x). Typically, X is called a conditioning variable or context
and Y – dependent (input) variable.

In terms of parametric estimation, the context usually influences specific param-
eter values, which then define the density of Y : fθ(y/x) = fθ(y/θ = θ(x)). This
allows to use the same models, as for unconditional estimation – we simply substi-
tute an optimal θ̂ with values, dependent on context: θ̂ = θ̂(x). For the specific
model designs, refer to Section 3.3.

One formulates MLE objective in the same manner to 3.11:

θ̂MLE = argmax
θ∈Θ

n∑
i=1

log fθ(y
(i)/x(i)) (3.13)

.
One can also show, that this MLE is equivalent to the minimisation of mean

conditional KL-divergence:

EX∼p(x) KL
(
p(y/X)||fθ(y/X)

)
= EX∼p(x) EY∼p(y/X)

[
log

p(Y/X)

fθ(Y/X)

]
(3.14)

3.2.2 Model Selection

Training objective. The choice of MLE for parameter estimation brings a huge
disadvantage, especially during a models’ class misspecification. As it was shown in
the previous subsection 3.2.1, the MLE estimate is equivalent to the M-projection
of data density on the models’ class. Due to the asymmetrical nature of KL-
divergence wrt. its arguments, M-projection tends to over-estimate the support
of data PDF. Other objectives, like reversed KL-divergence (or L-projection =
argminθ∈Θ KL(fθ||p)) or Jensen-Shannon divergence can provide somewhat better
estimate, which will result in more realistic sample from model’s distribution. Un-
fortunately, they not only require the knowledge of true data PDF but also could
under-estimate the support and ”concentrate” around some mode of data distribu-
tion. This issue, as mentioned by [52], is visually explained on Figure 3.3: mean of
isotropic Gaussian distribution, fitted on multi-modal data with MLE, lays far away
from high-density regions. Thus, resampled data will be unnatural.

For all the models, introduced in this thesis, we solely use MLE (specifically a
regularised version of it) as the main training objective, as deep estimators’ class is
flexible enough to mimic complex non-gaussian PDFs.

9

3. Methods

Regularisation techniques. For high-dimensional parameter spaces or in low-
data regimes MLE estimate 3.11 could have a poor generalisation or overfitting prob-
lem. While numerous approaches can be inherited from predictive modelling, such
as L1-/L2-penalisation, weight decay, dropout or variational inference with Bayesian
priors, it is unclear, what kind of inductive biases can be useful for (conditional)
density estimation.

Several recent works proposed use variational inference [54] or noise regular-
isation [42] to tackle this issue. We found the last one to work well on all of the
benchmarks, as variational estimation requires a selection of reasonable prior pa-
rameters. Following [42], we change the original datapoints (y(i), x(i)) with the their
noised version:

ỹ(i) = y(i) + ξy, x̃(i) = x(i) + ξx, ξx ∼ Kx(ξx) ξy ∼ Ky(ξy), (3.15)

where ξx and ξy are noise variables, i.i.d. sampled from zero centered and uncorre-
lated distributions Kx and Ky:

E ξ = 0 Cov(ξ, ξ) = σ2I (3.16)

Here σ denotes the standard deviation of noise and should be fine-tuned for both
Ky and Kx.

In the context of MLE estimation based on mini- or full-batch gradient descent,
the regularising noise is sampled for every epoch / datastep (see Appendix A.2 for
the algorithm description).

Authors of [42] showed that noise regularisation in the context of density es-
timation is equivalent to a smoothness constraint. By adding noise, we in fact
add concavity penalisation terms to the log-likelihood objective, which favour more
smooth densities: both in terms of dependent variable smoothness and contextual
dependency smoothness. This is nicely demonstrated on Figure 3.4.

Surprisingly, Gaussian noise regularisation was also useful in the case of discrete
conditioning variables, present as one-hot encoded context, even though it was not
directly studied by original paper [42]. Previous literature on adding noise to discrete
conditioning variables Xi, e.g. [31], only aims at predictive modelling.

Goodness-of-fit metrics. Numerous goodness-of-fit (GoF) metrics exist to eval-
uate unconditional generative models and some of them can be used for condi-
tional case. Two main groups can be distinguished: sample-based and density-
based metrics. The first one uses two (or more) samples Xi and X̃i, drawn from
p and f̂ respectively, and does not require the explicit knowledge of density esti-
mate f̂ . Examples include Maximum mean discrepancy (MMD) [19], Energy dis-
tance [41] or Wasserstein distance [4]. Second density-based group explicitely uses
f̂ (or estimated CDF F̂X(x)), e.g. Minimum distance estimation (Chi-squared [38],
Kolmogorov-Smirnov [37] distances), Hellinger distance [20] or Maximum likelihood
estimation (negative log-likelihood). We make a comparison of popular existing
conditional/unconditional GoF metrics in Table 3.1 in terms of scalability to high-
dimensional variables and value bounds.

Out of all the metrics, we utilised Hellinger distance, Kullback-Leibler and
Jensen-Shanon divergences for synthetic datasets (see Section 4.1.1) and negative
log-likelihood (NLL) – for all synthetic and real benchmarks. To provide an unbi-
ased estimate of theoretical GoF, the easiest practical choice is an empirical estimate

10

3.2 Density Estimation 11

0.0

0.2

0.4

0.6

0.8

1.0
σy = 0.0 σx = 0.0 σy = 0.0 σx = 0.25 σy = 0.0 σx = 0.5

0.0

0.2

0.4

0.6

0.8

1.0
σy = 0.05 σx = 0.0 σy = 0.05 σx = 0.25 σy = 0.05 σx = 0.5

−3 −2 −1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0
σy = 0.1 σx = 0.0

−3 −2 −1 0 1 2

σy = 0.1 σx = 0.25

−3 −2 −1 0 1 2

σy = 0.1 σx = 0.5

True density

Normalising flow estimate

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.2

0.4

0.6

0.8

1.0
d

en
si

ty

Figure 3.4: Effect on noise regularisation. 10-layers Conditional normalising flow (CNF) estimator
fθ(y/xi) (red) and true densities p(y/xi) (grey) for three test contexts i ∈ {1, 2, 3} (solid, dotted and
dash-dotted lines). Both context and input noises (σx ∈ {0.0, 0.25, 0.5} and σy ∈ {0.0, 0.05, 0.1})
contribute to a smoothness of estimated density. CNF was fitted on 250 samples of RandomGP-
GaussianNoise benchmark (see Section 4.1.1) with one input Y and 4 contextual (X1, X2, X3, X4)
variables.

GoF Metric Conditional High-dim
Values
bounds

Issues

Sample-based

Maximum mean dis-
crepancy

+ (density-
based) [23]

+ [0,+∞)
Bandwidth and kernel
selection

Wasserstein distance + [49]
∼ (Gaussian / dual
approximations)

[0,+∞)
Not suitable for condi-
tional GoF

Energy distance – +
Can be nor-
malised to
[0, 1)

Not suitable for condi-
tional GoF

Density-based

Minimum distance es-
timation metrics

+ [3; 60] – [0,+∞) Bandwidth selection

Negative log-likelihood + [48; 54] + (−∞,+∞)
Lower bound defined by
unknown entropy

Hellinger distance + [43] ∼ (MC-estimate) [0, 1] Requires p(x) or p(y/x)
Kullback-Leibler diver-
gence

+ ∼ (MC-estimate) [0,+∞) Requires p(x) or p(y/x)

Jensen-Shanon diver-
gence

+ ∼ (MC-estimate) [0, log 2] Requires p(x) or p(y/x)

Table 3.1: A small overview of existing goodness-of-fit metrics. Columns legend: Conditional –
suitability for conditional density estimation, High-dim – computational viability of metric wrt.
high-dimensionality of dependent variable (∼ means that computation requires additional approx-
imations or assumptions), Values bounds – metric values span, Issue – limitations or disadvantages
of metric.

based on hold-out test subset: D∗ = {(y(1), x(1)), ..., (y(n∗), x(n∗))}. Here n∗ is the

11

3. Methods

size of the test set. Until further notice, we shift to the conditional estimation
formulation in the following sections.

The simplest measure is the average test negative log-likelihood (NLL),
which uses the same training objective 3.13:

NLL = − 1

n∗

n∗∑
i=1

log fθ(y
(i)/x(i)) (3.17)

Test log-likelihood is one the most popular tools to estimate GoF of different
generative models: in language modelling [29], structured output learning [48] or
image/audio generation [11]. Unfortunately, as it was mentioned in [52], it is hard
to tell, what absolute values of log-likelihood produce plausible ”natural-looking”
samples, especially in high-dimensional scenarios. Conversely, a high-quality sample,
drawn from the estimated model, could have poor log-likelihood (e.g. if the model
is a look-up-table).

In synthetic benchmarks, we can use more plausible analytic GoF metrics, which
require the knowledge of true data generating PDF: conditional Hellinger distance
(HD), conditional Kullback-Leibler (KL) divergence and conditional Jensen-
Shanon (JS) divergence.

HD
(
p(y/x)||fθ(y/x)

)
=EX∼p(x)

√
1

2

∫
Y

(√
p(y/X)−

√
fθ(y/X)

)2

dy (3.18a)

KL
(
p(y/x)||fθ(y/x)

)
=EX∼p(x) KL

(
p(y/X)||fθ(y/X)

)
(3.18b)

JS
(
p(y/x)||fθ(y/x)

)
=EX∼p(x)

1

2
KL

(
p(y/X)

∣∣∣∣∣∣1
2

(p(y/X) + fθ(y/X))

)
+

+
1

2
KL

(
fθ(y/X)

∣∣∣∣∣∣1
2

(p(y/X) + fθ(y/X))

)
(3.18c)

On practice, they are approximated with MC-estimates based on test subset:

ĤD =
1

n∗

n∗∑
i=1

√
1

2

∫
Y

(√
p(y/x(i))−

√
fθ(y/x(i))

)2

dy (3.19a)

K̂L =
1

n∗

n∗∑
i=1

KL
(
p(y/x(i))||fθ(y/x(i))

)
(3.19b)

ĴS =
1

n∗

n∗∑
i=1

1

2
KL

(
p(y/x(i))

∣∣∣∣∣∣1
2

(p(y/x(i)) + fθ(y/x
(i)))

)
+

+
1

2
KL

(
fθ(y/x

(i))
∣∣∣∣∣∣1

2
(p(y/x(i)) + fθ(y/x

(i)))

)
(3.19c)

The apparent advantage of these GoF metrics (3.18a, 3.18b, 3.18c) is that they
are lower-bounded by 0 – for models which perfectly fit the data. Negative log-
likelihood (3.17) is, on other hand, lower-bounded by the (differential) entropy,
which is unknown together with the true data PDF. Thus, although NLL is useful
to compare different models or model classes, one can never know, how far is the
chosen model class from true distribution in ”absolute” values.

Two metrics (3.18a, 3.18c) additionally have upper-bounds, which could be
reached for example for two distributions, having different non-overlapping supports
(KL-divergence and NLL for them will be infinite).

12

3.3 Deep Conditional Density Estimators 13

3.3 Deep Conditional Density Estimators

While there has been a pleiad of conditional generative models in deep learning,
many of them solely concentrate on high-dimensional sample generation, predictive
modelling or uncertainty estimation (e.g. Bayesian neural networks [7], Conditional
Generative adversarial network [33] or Conditional Variational Autoencoder [48]).
For the sake of ML interpretability, we have the following requirements for a gener-
ative model:

• Tractable conditional density. Although in the scope of feature importance
estimation, the only aim of a conditional estimator is to draw a synthetic
sample, a tractable density allows for the model selection (e.g. with negative
log-likelihood).

• Easy and exact sampling. Even by having the tractable estimated density,
one still needs to effectively draw samples from the model. Omitting the
importance or rejection sampling is preferable.

• Generalisation in low data regimes. Deep density estimator should outperform
traditional density estimation on tabular low-dimensional data (e.g. UCI Ma-
chine Learning repository [13]).

It turned out, that not many neural-network-based methods fit all these require-
ments – see Table 3.2.

Parametric model
Tractable
density
fθ(y/x)

Exact
Sampling
Ỹ ∼ fθ(y/x)

Tractable
CDF Fθ(y/x)

Tractable
quantile function

F−1
θ (q/x)

Latent variable NNs (cVAE
[48], cGAN [33])

– + – –

Bayesian NNs [7] – + – –
Mixture Density Networks [6] + + + –
Conditional Normalising Flow
[54; 62]

+ + + +

Table 3.2: Comparison of deep parametric conditional generative models.

The results of studies [42; 43] on different synthetic and real low-dimensional
datasets motivated us to employ two models for interpretability research: Condi-
tional Normalising Flows (CNFs), as a main method of the thesis, and Mixture
Density Networks (MDNs), as a concurrent model for comparison. We success-
fully reproduced the reported performance of both estimators: see Appendix A.7
and found that these neural estimators are flexible enough to capture different non-
linearities and heteroscedasticity. At the same time, they don’t require tedious
hyperparameter selection and can be often used in a vanilla setting. Additionally,
before-mentioned papers experiment only with one-dimensional density estimation,
while our work extends it to multi-dimensional, e.g. in the context of SAGE calcu-
lation.

3.3.1 Conditional Normalising Flows

Normalising flows (NFs) [51] are a flexible tool to model complex densities,
which can capture such distribution properties as heavy tails, multimodality or

13

3. Methods

heteroscedasticity. They were introduced to deep learning in the scope of deep vari-
ational inference to model approximate posterior distributions [40]. By having a
tractable density and easy sampling mechanism, they can also be used in nu-
merous downstream tasks of synthetic data generation, anomaly detection or data
imputation.

A normalising flow describes the change of density of continuous random variable
after applying a sequence of invertable mappings. Given a random variable Z with
some known PDF Z ∼ pZ(z) (e.g. Gaussian or uniform), we define a transformed
variable X:

X = t(Z) Z ∼ pZ(z) (3.20)

Here t(·) : Z → X denotes a forward transformation and t−1(·) : X → Z – inverse.
Note, that the transformation is defined between spaces of same dimensionality:
dZ = dX . After applying a multivariate change of variables formula, we can find
a distribution of X:

pX(x) = pZ(z)

∣∣∣∣ det
dZ

dX

∣∣∣∣ = pZ(t−1(x))

∣∣∣∣ det
dt−1

dX
(x)

∣∣∣∣ (3.21)

where det dt−1

dX
is a determinant of Jacobian of inverse transformation t−1(·). Due to

inverse function theorem:

dt−1

dX
=

(
dt

dZ

)−1

so the Jacobian of inverse transformation can be substituted with the inverse Jaco-
bian of forward transformation. Then 3.21 can be simplified:

pX(x) = pZ(z)

∣∣∣∣ det

(
dt

dZ
(z)

)−1∣∣∣∣ =
[
Property of determinant; z = t−1(x)

]
=

= pZ(t−1(x))

∣∣∣∣ det
dt

dZ
(t−1(x))

∣∣∣∣−1

(3.22)

The name ”normalising” comes from the fact, that any complex continuous dis-
tribution X could be transformed to a normal Z with a specific t−1(·). In univariate
case, this is a solution of partial differential equation 3.21:

t−1(X) = ±F−1
Z (FX(X)) (3.23)

where FX(x) is unknown data CDF of X and F−1
Z (q) is quantile function of Z. This

was referred as Gaussianisation in [10].
On practice, we can construct arbitrarily complex densities by applying a com-

position of K transformations t1, t2, ..., tK :

X = ZK = tK(ZK−1) = tK(tK−1(ZK−2)) = ... = tK ◦ ... ◦ t1(Z0) (3.24)

where Z0 has known base distribution. One calls this chain of transformations a
flow (Figure 3.5). Now, density of X can be recursively found as:

pZK (zK) = pZK−1
(zK−1)

∣∣∣∣ det
dtK
dZK−1

(zK−1)

∣∣∣∣−1

= pZ0(z0)
K∏
k=1

∣∣∣∣ det
dtk
dZk−1

(zk−1)

∣∣∣∣−1

(3.25)

14

3.3 Deep Conditional Density Estimators 15

Figure 3.5: Illustration [61] of unconditional normalising flow, which transforms base normal dis-
tribution pZ0

= N(0, I) to complex one pZK
.

where z0, z1, ..., zK are found via 3.24.
Also, log-probability is now simply:

log pZK (zK) = log pZ0(z0)−
K∑
k=1

log

∣∣∣∣ det
dtk
dZk−1

(zk−1)

∣∣∣∣ (3.26)

Now, we can simply calculate the log-likehood of the observation x(i) = z
(i)
K :

one needs to push it through inverse flow to original base distribution space and
memorise all intermediate values z

(i)
K−1, z

(i)
K−2, ..., z

(i)
0 . Then, we just plug in those

values to Jacobians of forward transformations in 3.26 and calculate log-likehood of
z

(i)
0 .

If we introduce a parametrisation θ of transformations t1, t2, ..., tK , we can di-
rectly apply gradient descent methods to optimise MLE objective 3.11:

θ̂MLE = argmax
θ∈Θ

n∑
i=1

log fθ(x
(i)) = argmin

θ∈Θ

[
−

n∑
i=1

log pZK (x(i))

]
(3.27)

This loss is different from traditional losses like mean squared error or cross-entropy,
simply because the number of terms increases with the depth of the flow. Notably,
the only limitation in the choice of transformations, is that we need to know an
analytic formula for the determinant of Jacobian and inverse transformation, and
both should take a linear computation time. In principle, transformations could
be themselves an invertible neural network (e.g. [5]), but then the calculation of
Jacobian becomes computationally expensive.

We can understand forward flow as a series of transformations, which squish or
expand base density pZ0 to form the complex multimodal distribution: see Figure
3.6.

Sampling from normalising flows is performed via drawing a sample from the
base distribution Z̃0 ∼ pZ0(z0) and then pushing it through the forward flow 1 3.24.

Conditional normalising flows (CNFs) [54; 62] are a direct extension of un-
conditional – they employ an addintional neural network to produce a context-
dependent parameters of transformations.

1In practice, forward flows are used to compute log-likelihood and fit the model with 3.27
and reverse transformations – to perform sampling. Reverse transformation is typically more
computationally expensive than forward.

15

3. Methods

−30 −20 −10 0 10 20 30

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3.6: 200 equidistant points (row 0.0) on interval [−10.0, 10.0], transformed with 3 layers of
invertable radial flow (rows 1.0, 2.0 and 3.0 respectivelly). We can observe, how radial tranforma-
tions squish or expand initial uniform space.

Figure 3.7: Two possible designs for normalising flows conditional estimation [54; 62]. In (a) one
uses a contextual variable X to generate parameters of normalising flow θ = NNθ̃(x), in (b) –
X defines both flow parameters and base distribution parameters: θ = NNθ̃1

(x) and {µx, σ2
x} =

NNθ̃2
(x).

In this thesis, we inherit the design of [54], where the contextual variable X
influences only transformations parameters (see Figure 3.7(a)), but not the base
distribution itself. Both architectures are in fact universal density estimators and
thus the simpler design (b) is chosen:

θ = NNθ̃(x) (3.28)

where NN is a neural network with parameters θ̃. Similarly to 3.27, we aim to
minimise a negative conditional log-likehood:

ˆ̃θMLE = argmin
θ̃∈Θ̃

[
−

n∑
i=1

log pZK (y(i)/θ = NNθ̃(x
(i)))

]
(3.29)

Originally, authors of [54] used variational inference to prevent overfitting of log-
likelihood, by putting Gaussian priors on neural network parameters θ̃ as well as on
latent features θ. On the contrary, we were not able to reproduce their results and
thus used a noise regularisation, introduced in Section 3.2.2.

In the experiments, we employ two types of transformations: affine (linear) and
radial (non-linear). It also possible to use other non-linear transformations, such
as planar [40] or cubic splines [14], but the first two were proved to work well on
many real and synthetic datasets.

16

3.3 Deep Conditional Density Estimators 17

Affine transformation. Let a, b ∈ RdZ be a log-scale and shift parameters. A
point-wise affine transformation is defined as:

t(Z) = exp(a)� Z + b t−1(Z) = (Z − b)/ exp(a) (3.30)

where �, /and exp are pointwise multiplication, division and exponentiation. Then,
Jacobian and its log absolute determinant are:

dt

dZ
= diag(exp(a))

log

∣∣∣∣ det
dt

dZ

∣∣∣∣ = log

∣∣∣∣ det diag(exp(a))

∣∣∣∣ = log

dZ∏
i=1

exp(ai) =

dZ∑
i=1

ai

Exponentiation of scale allows to omit zero division problem while optimisation and
inference. Applying this transformation to a Gaussian distribution still leaves it
Gaussian, thus we need to use some kind of nonlinearity.

Radial transformation. Let α ∈ R+, β ∈ R be compress and expand parameters
and γ ∈ RdZ be a reference point. Following the original parametrisation of [54],
one defines a radial transformation as:

t(Z) = Z +
αβ(Z − γ)

α + ||Z − γ||2
(3.31)

where || · ||2 is L2-norm of a vector. To understand the meaning of parameters, let’s
set R = (Z − γ) and write down a Jacobian (see the derivation in Appendix A.3):

dt

dZ
= (1 +

αβ

α + ||R||2
)I − αβ

||R||2(α + ||R||2)2
RRT

log

∣∣∣∣ det
dt

dZ

∣∣∣∣ = (dZ − 1) log
∣∣∣1 +

αβ

α + ||R||2

∣∣∣+ log
∣∣∣1 +

α2β

(α + ||R||2)2

∣∣∣
Radial transformation applies expansion or contraction around a reference point

γ. The first shape parameter α controls how fast dt
dZ

decays to identity transfor-
mation from the reference point. As α → 0, transformation colapses to identity
and α < 0 makes it non-monotonic (and thus, non-invertable). Second parameter
β influences magnitude and direction of distortion, by either pushing points to γ,
when β > 0, or expanding them from γ, when β ∈ (−1, 0). Analogically, we can
ensure monotonicity with β > −1.

Constraints α > 0 and β > −1 can be achived via handy reparametrisation with
α̂, β̂ ∈ R [54]:

α = log
(

exp(α̂) + 1
)

β = exp(β̂)− 1 (3.32)

According to [54], β̂ has an interpretation of a maximum change in log-density of
points in the base distribution.

Radial transformation is a very appealing choice to model complex distributions,
as it has only K × (dZ + 2) parameters. For sake of sampling from radial flow, after
reparametrisation 3.32 we also derived the formula for the inverse transformation
t−1(Z) (see Appendix A.3, 6.15). To our knowledge, it is the first application
of radial flows to perform sampling. Although inverse transformation is more
computationally complex, it serves well in the scope of interpretability methods.

17

3. Methods

Both affine and radial transformations should function for multi-dimensional
conditional estimation. Although, originally authors [54] proposed to use several
parallel flows, where the outputs of ones are fed as contextual features to others.
In this way, they factorised a multivariate joint density as a product of condition-
als. On the other hand, we employed a simplified approach by using multivariate
transformations.

3.3.2 Mixture Density Networks

As a concurent neural density estimation approach we choose Mixture density net-
works (MDNs), proposed by [6]. Specifically, we use a multivariate Gaussian mixture
with diagonal covariance matrix and C mixing components:

fθ(y/x) =
C∑
i=1

π[i]
x pN [i]

x
(y) (3.33)

where p
N

[i]
x

(y) are PDFs of multivariate normal distributions N(µ
[i]
x ,Σ

[i]
x) with mean

µ
[i]
x and diagonal covariance Σ

[i]
x = diag{σ[i]

x

2}; π[i]
x are mixing weights (

∑
i π

[i]
x = 1).

All the parameters of mixture are produced by two neural networks:

{µ[i]
x ,Σ

[i]
x } = NNθ̃1

(x) {π[i]
x } = NNθ̃2

(x) (3.34)

where θ̃ = {θ̃1, θ̃2} are parameters of neural networks. To ensure, weights are sum-

ming to 1, we apply a softmax nonlinearity, as the last layer of NNθ̃2
. Also Σ

[i]
x needs

to be positively defined, so we additionally exponentiate the values of neurons, lead-
ing to the variance parameters in NNθ̃1

. No restrictions are put on means µ
[i]
x and

thus no non-linearity is applied to corresponding neurons. MDNs are trained with
the MLE objective, as discussed previously in Section 3.11.

In order to sample from MDN, one needs to first select the mixing component c̃,
by sampling it from categorical distribution c̃ ∼ Cat(π

[i]
x). Then we draw the sample

from corresponding Gaussian distribution Ỹ ∼ N(µ
[c̃]
x ,Σ

[c̃]
x).

3.3.3 Categorical & Mixed Estimation

Let’s say we want to model a Categorical distribution with M classes. Modelling
finite discrete data (categorical) with a continuous estimator could lead to degenerate
solutions and achieve extreme values of test log-likelihood by locating density spikes
around discrete values [55].

There exist discrete normalising flows [53], which transform discrete distribu-
tions, or one can use variational dequantisation to transform discrete distribution
into contionious [21]. But we can apply a much simpler model, by producing a Cat-
egorical distribution parameters with a neural network (similarly to MDNs 3.3.2):

{π[i]
x } = NNθ̃(x)

M∑
i=1

π[i]
x = 1 (3.35)

Note, that the last layer outputs of NN should also be transformed with softmax
non-linearity.

18

3.3 Deep Conditional Density Estimators 19

Recently [24] proposed Copula Flows, which can tackle multivariate mixed-
variable density estimation, by employing the distributional transform [44] (similar
to probability integral transform for continuous variables). They introduce a univer-
sal density estimator, by modelling a joint copula density and univariate marginals
with spline-based normalising flows.

19

Section 4

Evaluation and Results

In this section, we compare different conditional density estimators and study their
effect on feature importance evaluation on different synthetic, semi-synthetic and
real datasets. Additionally, we study, how deep density estimators can help to
discover the influence of sensitive features.

While designing a benchmark and planning experiments, we follow the guidelines,
defined by [34]. Mainly, one needs to report MC-estimates of different estimands
(mean and standard deviation/median and confidence intervals), by using several
random seeds.

The benchmarking strategy consists of two main stages: density estimation and
feature importance evaluation.

Density estimation. In the majority of experiments we employ the following
models with the basic setting, without performing a dataset-specific hyperparameter
tuning:

• CondGauss. Assuming, that the data (X(i), Y (i)) comes from joint Gaussian
distribution, we can use MLE estimates of joint mean and covariance (µ̂, Σ̂)
to model conditional distribution:

fθ̂(y/x) = pNθ̂(y/x)

Nθ̂ = N
(
µ̂y + Σ̂yxΣ̂

−1
xx (x− µ̂x), Σ̂yy − Σ̂yxΣ̂

−1
xx Σ̂yx

)
µ̂ =

(
µ̂y
µ̂x

)
Σ̂ =

(
Σ̂yy Σ̂yx

Σ̂xy Σ̂xx

)

• VanillaCNF. Conditional normalising flow (see Section 3.3.1) with one affine
transformation followed by two radial transformations (K = 3) and standard
Gaussian distribution N(0, 1) as the base distribution. The contextual network
has one hidden layer with 16 nodes and a hyperbolic tangent as a hidden non-
linearity.

• VanillaMDN. Mixture density network (see Section 3.3.2) with C = 5 com-
ponents. Mixing components networks both have one hidden layer with the
number of nodes equal to the dimensionality of context and use Exponential
Linear Unit (ELU) as hidden non-linearity. Additionally, heavy-tailed distri-
butions sometimes caused mixture components parameters to go to infinity,

20

21

−2 −1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5

CondGauss

Test sample

−2 −1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5

VanillaCNF

Test sample

−2 −1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5

VanillaMDN

Test sample

fθ̂(y/x = 0)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fθ̂(y/x = 1)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 4.1: CondGauss, VanillaCNF and VanillaMDN fitted on moons toy dataset (two inter-
leaving half circles), based on 2000 training datapoints. 2-dimensional distribution is conditioned
on binary variable (upper half-circle X = 0 and lower: X = 1). Note, that CondGauss is a
misspesified model, because (Y1, Y2, X) are not normally distributed.

so for SynTReN generator, we employed weight decay of 10−3 (0.05 for Sachs-
2005) together with early stopping, based on undefined loss values. Also,
C = 4 for Sachs-2005.

Both VanillaCNF and VanillaMDN are fitted with full-batch gradient descent
with noise regularisation (see Appendix A.2), using Adam optimiser [26] with pa-
rameters β1 = 0.9, β2 = 0.99 and learning rate α = 0.001. Number of epochs is
Ne = 1000 and noise intensities are σx = 0.1, σy = 0.05. Even though these two
models have very few parameters, they are still capable to fit complex distributions,
e.g. moons dataset (Figure 4.1).

Additionally, for Sachs-2005 dataset (see Section 4.1.2) we do a study of hyper-
parameter tuning for CNFs and MDNs and other possible enhancements, such as
different batch sizes or support transformations for CNF.

Feature importance evaluation. It is hard to access ground-truth feature im-
portance values. As we saw in Section 3.1.1 - they could be easily derived for the
simple linear regression with MSE risk.

In principle, it is possible to make an MC-estimate for feature importance, but
we need to have access to ground-truth conditional distribution. It turns out, a very
small amount of multivariate synthetic generating mechanisms allow to perform so-
called conditional queries – inferring conditional probability distributions for the
arbitrary sets of dependent and contextual variables (see Section for details 4.1.1).
Thus, in the majority of cases, we can only provide the MC-estimate of the feature
importance, based on the estimated sampler. Let’s note nMC as the number of times
the replacement variable was resampled.

To see, how it influences the estimation, let’s review the toy example introduced
in [27] (see Figure 4.2). There are four regressors X1, X2, X3, X4 and a target vari-
able Y , defined by the linear Gaussian structural causal model (SCM) (see Figure
4.2 (a)), with coefficients equal to 1 and additive noise σ1 = σ2 = σ4 = 1, σ3 = 0.3
and σy = 0.5. We select ordinary least-squares linear regression to estimate pa-
rameters and CondGauss to estimate the conditional sampler parameters (as indeed
(X1, X2, X3, X4) have a joint Gaussian distribution). Notably, the reproduced RFI
values were on average higher, than reported in [27], as there is a difference be-
tween samplers. [27] used equi-correlated model-X knockoffs [9], which additionally
required the swap property and thus resampled variables were more correlated with

21

4. Evaluation and Results

X1

X2

X3

X4

Y

(a) Causal graph of syn-
thetic example.

4 16 64 256

nMC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

F
ea

tu
re

im
p

or
ta

n
ce

n = 90, n∗ = 10

4 16 64 256

nMC

n = 900, n∗ = 100

4 16 64 256

nMC

n = 9000, n∗ = 1000

4 16 64 256

nMC

RFIX1
2

RFIX1
3

RFIX1
4

n = 90000, n∗ = 10000

(b) RFIs for G = {X1} and features X2, X3 and X4 with respect to dataset
sizes and nMC.

Figure 4.2: Convergence of estimated RFI values to the theoretic value. Horizontal lines on (b) are
analytically calculated RFIs for multivariate Gaussian distribution (via 3.6) and scatter points are
MC-estimates based on estimated conditional Gaussian distribution: 20 random seeds per nMC.
Notably, the convergence of RFIX2

2 to zero is achieved even for small dataset sizes, as the respective

estimated coefficient β̂2 was always close to zero.

original. This resulted in more narrow perturbations and feature importance were
lower. We also discovered the convergence to the theoretic result, as we increase
both the number of train/test data (n/n∗) and the number of MC-samples nMC. In-
terestingly, in low data regimes MC-estimates were converging to the biased values,
which mirrored the uncertainty of model/sampler parameters estimation. On Figure
4.2 (b) we plot the MC-estimated RFI values for G = {X1} and features of interest
X2, X3, X4. We vary the joined dataset sizes from 102 to 105, with test subset being
10%, different nMC ∈ {4, 8, 16, 32, 64, 128, 256, 512} with 20 random seeds for each
MC size.

This experiment motivated the trade-off choice of test subset size n∗ = 1000 for
synthetic benchmarks and the choice of nMC = 50 for all the experiments with RFI.

For all the following datasets, we study RFI, its relation to ground-truth or
approximate causal graph and the different properties of conditional distributions.
For Sachs-2005 we also provide the empirical results for SAGE (see Section 4.1.2).

In a nutshell, aims of the following benchmark study are:
• check goodness-of-fit of estimators in different non-Gaussian scenarios
• evaluate, how goodness-of-fit contributes to feature importance validity
• study the influence of sensitive attributes / confounders

4.1 Datasets with Known Causal Graph

By knowing the ground-truth causal generating mechanism of data in the form of
Structural causal model (SCM), it is possible to sample arbitrary large datasets.
SCM contains a series of conditional functional assignments (conditional distribu-
tions of child nodes wrt. their parents), ordered topologically according to the re-
spective causal directed acyclic graph (DAG). In principle, it is possible to evaluate
RFIs for all the possible combinations of target - a feature of interest - contextual
variables, but it requires an exponential number of conditional density estimations.
The same is needed for the exact evaluation of SAGE. But, it is hard to under-
stand the validity of these values, without access to the underlying true conditional

22

4.1 Datasets with Known Causal Graph 23

distributions.
We propose to decrease the number of estimations by using the following concepts

from feature selection theory, which have an interesting relation to causal SCMs.
If we assume some regularity conditions between causal DAG and related joint
distribution (Causal Markov condition and faithfulness), we can assess conditional
dependence/independence statements with the help of visual criterium on DAG – d-
separation. Thus, three following feature selection concepts [39]: strong relevance,
weak relevance and irrelevance have the connection to DAG too.

Definition 4.1.1 (Strong relevance). A feature Xi is strongly relevant to the target
Y if

p(y/x−i) 6= p(y/x−i, xi)

This means that the variable Xi carries the information about Y , that no other
variable has. So the target will be always dependent on Xi, conditioning on all
possible contexts.

Definition 4.1.2 (Weak relevance). A feature Xi is weakly relevant to the target
Y if it is not strongly relevant and

∃S ⊆ −i : p(y/xS) 6= p(y/xS, xi)

Weak relevance defines other variables in DAG, which can also carry information
about the target, but not in all the contexts.

Definition 4.1.3 (Irrelevance). A feature Xi is irrelevant to the target Y , if it is
neither strongly relevant nor weakly and

∀S ⊆ −i : p(y/xS) = p(y/xS, xi)

meaning, that irrelevant features are always independent to the target.

These three definitions split all the features in R on mutually exclusive groups.
In the context of SCMs, strong relevance coincide with the Markov blanket of
nodes [2]:

Definition 4.1.4 (Markov Blanket). A Markov Blanket of node Xi is the set of
parents PaXi , children ChXi and parents of children (spouses) PaChXi

in a causal
DAG G:

MB(Xi) = PaXi ∪ ChXi ∪ PaChXi

Property 4.1.1 (Total conditioning). For the faithfull causal graph G with set of
nodes, indexed with R:

∀i, j ∈ R :

(
Xi ∈ MB(Xj)⇐⇒ p(xj/xR\{i,j}) 6= p(xj/xR\{i,j}, xi)

)
(4.1)

This property bounds the strongly relevant features with the Markov blanket of
a target. In the same way, we can say that non-Markov blanket (all the nodes
of graph outside the Markov blanket) are the set of weakly and irrelevant features.
This property motivates to study only specific feature importances:

23

4. Evaluation and Results

Xi

(a) Initial causal DAG
G and target variable Xi
(yellow).

Xj

Xi

(b) Weakly relevant
feature of interest Xj
(green) and MB(Xi) -
not hatched nodes.

Xj

Xi

(c) Fitting conditional
distribution Xj/MB(Xi).

Xj

Xi

(d) Checking, if
MB(Xj) ⊆ MB(Xi),
MB(Xj) marked with
bold – needed for
analytic GoF metrics.

Figure 4.3: Simplified scheme of evaluation steps while calculating RFI
MB(Xi)
j .

1. RFIs, conditioned on strongly relevant features, should be close to 0 (for the
perfect predictor and conditional sampler). We mark the first group of RFIs

as MB-RFIs (RFI
MB(Xi)
j).

2. RFIs, conditioned on the set of weakly and irrelevant features, should be non
zero and depend on the level of noise of structural assignments. Also, they
should be on average higher, than MB-RFIs. We mark this group of impor-
tances with non-MB-RFIs (RFI

non-MB(Xi)
j).

3. SAGE values should be zero for irrelevant features and non-zero for strongly
relevant (for correct predictor and correct sampler).

4. SAGE values of weakly relevant features can range from zero to values of
strongly relevant features, as Shapely values are only approximations of true
collective contributions.

Full RFI evaluation protocol for datasets with known causal DAGs is listed in the
Appendix A.4. In a nutshell, we iteratively select a target variable from graph nodes,
fit three regression models (Linear Regression, Random Forest [8] and Light Gradi-
ent Boosting Machine regression model [25] (LightGBMRegressor)) and evaluate test
risks (mean squared error (MSE) and mean absolute error (MAE)). Afterwards, we
fit conditional samplers with the conditioning sets equal to MB(Xi) in the first set-
ting and to non-MB(Xi) – in second. We report conditional goodness-of-fit metrics:
NLL for all the experiments and advanced metrics (3.18a, 3.18b, 3.18c) for special

cases of synthetic benchmarks (see Section 4.1.1). Then we evaluate RFI
MB(Xi)
j and

RFI
non-MB(Xi)
j for all the training variables. Schematically, this evaluation can be

seen on Figures 4.3 and 4.4. For the design of SAGE evaluation, we refer to Section
4.1.4.

We found the benchmark for causal structure learning fits the needs of RFI
and SAGE evaluation. Specifically, we use some synthetic, semi-synthetic and real
datasets with continuous features from [28]. Not many benchmarks provide contin-
uous structural causal models (e.g. a popular bayesian network structure learning
library has only discrete SEMs [47]).

24

4.1 Datasets with Known Causal Graph 25

Xi

(a) Initial causal DAG
G and target variable Xi
(yellow).

Xj Xi

(b) Strongly relevant
feature of interest Xj
(green) and non-MB(Xi)
- not hatched nodes.

Xj Xi

(c) Fitting condi-
tional distribution
Xj/non-MB(Xi).

Figure 4.4: Simplified scheme of evaluation steps while calculating RFI
non-MB(Xi)
j .

4.1.1 Structural Causal Models Datasets

We use four synthetic SCMs, proposed by [28]. First, we sample a random DAG
according to a Erdős–Rényi model G ∼ G(p,m): the resulting random DAG will
have exactly p nodes and at maximum m edges. Then we define following functional
assignments:

1. LinearGaussianNoise. SCM, which uses a linear combination of parent nodes
and additive Gaussian noise: Xj/PaXj ∼ wTj PaXj + 0.2N(0, σ2

j), where linear
combination weights and standard deviations are sampled uniformly σ2

j ∼
U [1, 2], wij ∼ U [0, 1]. As all the variables from G form a joint Gaussian
distribution with parameters N(0,W−1 diag(0.04 · σ2)W−1T), we can infer all
the conditional distributions (see CondGauss 4). Here W is composed with
the adjacency matrix of G multiplied on respective weights wj.

2. RandomGPGaussianNoise. SCM, which samples a non-linear function from
a Gaussian process with unit-bandwidth RBF-kernel k(X,X ′) and adds the
Gaussian noise: Xj/PaXj ∼ fj(PaXj) + 0.2N(0, σ2

j); fj ∼ GP(0, k(X,X ′)).
Standard deviations are sampled uniformly σ2

j ∼ U [1, 2].

3. PostNonLinearLaplace1. SCM with a non-linear function from a Gaussian
process with unit-bandwidth RBF-kernel k(X,X ′), additive Laplace noise and
sigmoid as post non-linearity: Xj/PaXj ∼ σ(fj(PaXj) + Laplace(0, lj)); fj ∼
GP(0, k(X,X ′)). Scales of Laplace noises are uniform: lj ∼ U [0, 1]. Thus,
the support of all marginal and conditional distributions is limited to (0, 1)
interval.

4. PostNonLinearMultiplicativeHalfNormal. Multiplicative SCM with a Half-
Normal noise defined as: Xj/PaXj ∼ exp

(
log
(∑

PaXj
)

+ |N(0, σ2
j)|
)
; σ2

j ∼
U [0, 1]. The distribution has heavy-tails and positive support.

1We encountered several computational issues while sampling from random Gaussian processes,
in cases when data size was larger than 50K or when we numerically calculated integrals for GoF
metrics. This is due to the fact, that any new function evaluation takes longer time than previous
for GPs. Thus, we used a linear interpolation and zero extrapolation, after we sampled a train
subset, which substantially decreased calculation time.

25

4. Evaluation and Results

The example of the random synthetic sample from all four SCMs with the fixed
random DAG can be found on Figure 6.1 in Appendix A.6, where one can ob-
serve different distributional properties: non-linear conditional mean, long tails or
bounded support.

Unfortunately, in general, we can infer ground-truth conditional distributions in
some limited cases, e.g. when the conditioning set contains only parents – so simply
using structural assignments formulas with the change of variables theorem 3.21
(both sigmoid in PostNonLinearLaplace and exponentiation in PostNonLinearMul-
tiplicativeHalfNormal are invertible transformations) and additivity of parameters
of noise distributions (Normal, Half-Normal or Laplace).

The problem of probabilistic inference in Bayesian Networks for the arbitrary
conditional query was overviewed in [46]. Authors pinpoint, that exact inference is
possible only for specific types of SCMs, like LinearGaussianNoise or models with
conjugate noises (e.g. from exponential family and assignments of a special form).
Even an approximate inference is a huge area of research. This was recently named
as expressiveness versus tractability issue [58]. Authors proposed an alterna-
tive to SCMs – so-called probabilistic circuits, a unified framework for tractable
probabilistic modelling.

As we saw with the total conditioning property 4.1.1, conditioning on all the
variables in DAG is equivalent to conditioning on Markov Blanket. Luckily, a true
MB-conditional distribution for every node, which is used for evaluation of 3.18a,
3.18b, 3.18c, can be exactly inferred or approximated via parents-conditional distri-
butions with the Bayes rule (see Appendix A.5 for a derivation):

p(xi/x−i) = p(xi/MB(xi)) =
p(xi/Paxi)

∏
xj∈Chxi

p(xj/Paxj , xi)∫
Xi p(xi/Paxi)

∏
xj∈Chxi

p(xj/Paxj , xi) dxi
(4.2)

On practice, a normalisation constant in the denominator of 4.2 is estimated with
the Monte-Carlo integration by sampling X̃

(k)
i ∼ p(xi/Paxi):

1

K

∑
k

∏
xj∈Chxi

p(xj/Paxj , xi = x̃i
(k)) (4.3)

where K is the sample size (for all the synthetic experiments we set K = 5000). Fur-
thermore, to calculate GoF metrics 3.18a, 3.18b, 3.18c, we employed the numerical
integration with Scipy quad method. We calculated integrals for all the contexts in
test subset and then averaged values, which didn’t surpass bounds for GoF metrics
3.1 (it could happen due to bad quadrature calculation).

As we found no existing open-source tool for continuous non-linear /
non-Gaussian SCMs, we made our own code, built over PyTorch distribu-
tions tools. In the experiments, we vary train subset size n ∈ {1000, 5000, 10000},
number of nodes p ∈ {5, 10, 20} and number of edges m ∈ {p, 2p}. We set test
subset size to n∗ = 1000.

4.1.2 Semi-synthetic and Real Datasets

SynTReN generator is a semi-synthetic dataset generator [57], with a known
DAG, but black-box assignments. It creates synthetic transcriptional regulatory

26

https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.integrate.quad.html
https://pytorch.org/docs/stable/distributions.html
https://pytorch.org/docs/stable/distributions.html

4.1 Datasets with Known Causal Graph 27

networks and produces simulated gene expression data, that approximates exper-
imental data. We use 10 different subgraphs with 20 variables in each2. Number
of edges ranges from 19 to 34 and each dataset is split into 400 train and 100 test
datapoints with 3 different randomly shuffled splits. After examining pairwise scat-
ter matrix of data (see Figure 6.2 (b)), we noticed a huge number of multi-modal
(sometimes nearly uniform) and asymmetrical marginals. Similarly, we applied the
standard mean-std normalisation.

Sachs-2005 dataset is a real sample from a known causal graph, provided by [45].
It measures the expression level of different proteins and phospholipids in human
cells. DAG (see Figure 6.3 (a)) consists of 11 variables and 17 edges and we made 5
random splits with 682 train and 171 test datapoints. Notably, DAG has in fact two
disjoint subgraphs. The marginal distributions tend to have heavy tails (see Figure
6.3 (b)). Among other preprocessing steps, we normalised features with a standard
mean-std normalisation. The same random splits were used for enhancements study
and SAGE experiments.

4.1.3 RFI Results

After performing the experiments, described in the previous section (according to
the protocol A.4), we want to check the following intuitive properties of samplers
and RFI values:

• Goodness-of-fit and its relation to conditioning size, train size and possible
sampler enhancements (for Sachs-2005).

• MB-RFIs should be close to zero.
• Assessing the empirical correlation between MB-RFIs and test risk, so that

lower generalisation risk will mean lower importance of weakly relevant fea-
tures.

• Non-MB RFIs should be larger than MB-RFIs.
• Influence of samplers’ enhancements on RFI values (for Sachs-2005).

Goodness-of-fit and conditioning size. On the Figure 4.5 we report condi-
tional goodness-of-fit metrics with respect to increasing size of Markov blanket –
from 1 to 8, in the setting of MB-RFIs. Expectedly, CondGauss outperforms by a
margin on LinearGaussianNoise benchmark for all the MB sizes and all the metrics.
On RandomGPGaussianNoise, one sees no clear preference for any specific sampler
(CondGauss also performs well in this setting, as the amount of present noise can
”mute” random non-linearity and conditional distribution will be similar to Gaus-
sian, e.g. see pairplot 6.1 (b)). On PostNonLinearLaplace, both deep estimators
on avarage outperform CondGauss (but it can be hard to see with the negative
log-likelihood). Regarding the last heavy-tailed benchmark PostNonLinearMulti-
plicativeHalfNormal, VanillaMDN and VanillaCNF are better for all the sizes – it
could even be noticed with the NLL.

For the second non-MB-conditional setting, we can only evaluate the analytic
GoF metrics for LinearGaussianNoise (see Figure 4.6, top-row), as for the other
datasets Markov Blanket for features of interest contains the target variable, which

2https://github.com/kurowasan/GraN-DAG/blob/master/data/syntren p20.zip

27

https://github.com/kurowasan/GraN-DAG/blob/master/data/syntren_p20.zip

4. Evaluation and Results

2 4 6 8
−0.05

0.00

0.05

0.10

0.15

T
es

t
G

oF

LinearGaussianNoise — NLL

2 4 6 8

0.00

0.01

0.02

0.03

LinearGaussianNoise — JSD

2 4 6 8
0.00

0.05

0.10

0.15

LinearGaussianNoise — HD

2 4 6 8

0.00

0.05

0.10

0.15

LinearGaussianNoise — KLD

2 4 6 8

1.20

1.25

1.30

1.35

1.40

T
es

t
G

o
F

RandomGPGaussianNoise — NLL

2 4 6 8

0.00

0.01

0.02

0.03

RandomGPGaussianNoise — JSD

2 4 6 8
0.00

0.05

0.10

0.15

RandomGPGaussianNoise — HD

2 4 6 8

0.00

0.05

0.10

0.15

RandomGPGaussianNoise — KLD

2 4 6 8

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

T
es

t
G

oF

PostNonLinearLaplace — NLL

2 4 6 8
0.00

0.01

0.02

0.03

0.04

PostNonLinearLaplace — JSD

2 4 6 8

0.05

0.10

0.15

0.20

PostNonLinearLaplace — HD

2 4 6 8

0.00

0.05

0.10

0.15

0.20

0.25
PostNonLinearLaplace — KLD

2 4 6 8

|MB(Xi)|

0.5

1.0

1.5

2.0

T
es

t
G

oF

PostNonLinearMultiplicativeHalfNormal — NLL

2 4 6 8

|MB(Xi)|

0.00

0.05

0.10

0.15

PostNonLinearMultiplicativeHalfNormal — JSD

2 4 6 8

|MB(Xi)|

0.1

0.2

0.3

0.4

PostNonLinearMultiplicativeHalfNormal — HD

2 4 6 8

|MB(Xi)|

0.0

0.2

0.4

0.6

0.8

PostNonLinearMultiplicativeHalfNormal — KLD

estimator

VanillaCNF

VanillaMDN

CondGauss

Figure 4.5: Median test goodness-of-fit values and 95% CI with respect to different sizes of condi-
tioning MB sets for three density estimators (the lower the better). Column-wise we report NLL,
JSD, HD and KLD and row-wise we differ synthetic SCM types. Note, that y-axes are not shared
on the figure.

must be excluded while samplers fit. Thus, for the three remaining benchmarks,
we report solely NLL (see Figure 4.6, bottom row). Now, conditioning size ranges
from 1 to 18. Similarly, CondGauss is the best choice for LinearGaussianNoise
SCM. For non-linear ones, we also notice that NLL is almost indistinctive for Post-
NonLinearLaplace and RandomGPGaussianNoise meaning that all models perform
roughly the same. Only for PostNonLinearMultiplicativeHalfNormal3, we see a clear
preference of deep estimators.

The general trend in both MB- and non-MB-conditional settings is that the
variance of deep density estimators increases with the conditioning set size, for all
the SCMs.

We observe an average superiority of deep density estimators on SynTReN and
Sachs-2005, for all the conditioning sizes and both settings (see Figure 4.7). This is
noticeable on the second dataset, which has long-tailed marginal distributions. The
larger variance of SynTReN originates due to differences in causal DAGs, whereas
Sachs-2005 results are based on a single graph.

Goodness-of-fit and train size. After inspecting the Figure 4.8, we observe that
goodness-of-fit is getting better for deep density estimators and stays relatively the
same for CondGauss. The uncertainty of estimation decreases, too, which is seen
from shrinking confidence intervals. CondGaussian can outperform deep estima-
tors on RandomGPGaussianNoise or PostNonLinearLaplace SCMs, but only in low

3Some experiments for VanillaMDNs on PostNonLinearMultiplicativeHalfNormal failed due to
the to high values for some mixture components, so we refitted them with the weight decay =
10−3.

28

4.1 Datasets with Known Causal Graph 29

5 10 15

|non-MB(Xi)|

−0.2

0.0

0.2

0.4

T
es

t
G

o
F

LinearGaussianNoise — NLL

5 10 15

|non-MB(Xi)|

0.00

0.02

0.04

0.06

0.08

0.10

LinearGaussianNoise — JSD

5 10 15

|non-MB(Xi)|

0.0

0.1

0.2

0.3

LinearGaussianNoise — HD

5 10 15

|non-MB(Xi)|

0.0

0.2

0.4

0.6

LinearGaussianNoise — KLD

estimator

VanillaCNF

VanillaMDN

CondGauss

5 10 15

|non-MB(Xi)|

1.00

1.25

1.50

1.75

T
es

t
G

o
F

NLL — RandomGPGaussianNoise

5 10 15

|non-MB(Xi)|

−1.5

−1.0

−0.5

0.0
NLL — PostNonLinearLaplace

5 10 15

|non-MB(Xi)|

0

2

4

NLL — PostNonLinearMultiplicativeHalfNormal

estimator

VanillaCNF

VanillaMDN

CondGauss

Figure 4.6: Median test goodness-of-fit values and 95% CI with respect to different sizes of con-
ditioning non-MB sets for three density estimators (the lower the better). Top-row: column-wise
we report NLL, JSD, HD and KLD for LinearGaussianNoise. Bottom-row: column-wise we differ
three remaining non-linear SCMs and report NLL.

2 4 6 8 10 12 14 16

|MB(Xi)|

0.0

0.5

1.0

T
es

t
N

L
L

SynTReN – NLL

2 4 6 8 10 12 14 16 18

|non-MB(Xi)|

−0.5

0.0

0.5

1.0

T
es

t
N

L
L

SynTReN – NLL

VanillaCNF

VanillaMDN

CondGauss

2 3 4 5 6 7

|MB(Xi)|

0.5

1.0

1.5

T
es

t
N

L
L

Sachs-2005 – NLL

3 4 5 6 7 8

|non-MB(Xi)|

0.5

1.0

1.5

T
es

t
N

L
L

Sachs-2005 – NLL

VanillaCNF

VanillaMDN

CondGauss

Figure 4.7: Median test negative log-likelihood and 95% CI with respect to different sizes of
conditioning MB sets for three density estimators (the lower the better). First and second rows
show results on SynTReN and Sachs-2005 respectivelly, and columns stand for MB / non-MB
conditional settings.

1000 5000 10000

0.00

0.05

0.10

T
es

t
G

oF

LinearGaussianNoise — NLL

1000 5000 10000

0.000

0.005

0.010

0.015

0.020

LinearGaussianNoise — JSD

1000 5000 10000

0.05

0.10

LinearGaussianNoise — HD

1000 5000 10000

0.000

0.025

0.050

0.075

0.100

LinearGaussianNoise — KLD

1000 5000 10000

1.20

1.25

1.30

T
es

t
G

oF

RandomGPGaussianNoise — NLL

1000 5000 10000

0.000

0.005

0.010

RandomGPGaussianNoise — JSD

1000 5000 10000

0.025

0.050

0.075

0.100

RandomGPGaussianNoise — HD

1000 5000 10000

0.00

0.02

0.04

RandomGPGaussianNoise — KLD

1000 5000 10000
−1.0

−0.9

−0.8

−0.7

−0.6

T
es

t
G

oF

PostNonLinearLaplace — NLL

1000 5000 10000

0.005

0.010

0.015

0.020
PostNonLinearLaplace — JSD

1000 5000 10000

0.06

0.08

0.10

0.12

0.14

PostNonLinearLaplace — HD

1000 5000 10000

0.02

0.04

0.06

0.08

0.10

PostNonLinearLaplace — KLD

1000 5000 10000

n

0.6

0.8

1.0

1.2

T
es

t
G

oF

PostNonLinearMultiplicativeHalfNormal — NLL

1000 5000 10000

n

0.05

0.10

PostNonLinearMultiplicativeHalfNormal — JSD

1000 5000 10000

n

0.2

0.3

0.4
PostNonLinearMultiplicativeHalfNormal — HD

1000 5000 10000

n

0.2

0.4

0.6
PostNonLinearMultiplicativeHalfNormal — KLD

estimator

VanillaCNF

VanillaMDN

CondGauss

Figure 4.8: Median test goodness-of-fit values and 95% CI with respect to different train sizes
n ∈ {1000, 5000, 10000} for three density estimators, averaged over MB and non-MB conditional
settings (the lower the better). Column-wise we report NLL, JSD, HD and KLD and row-wise we
differ synthetic SCM types. Note, that y-axes are not shared on the figure.

29

4. Evaluation and Results

1000 5000 10000

2

4

6

8

M
B

-R
F

I

×10−5 LinearGaussianNoise — LinearRegression

1000 5000 10000

0.00015

0.00020

LinearGaussianNoise — RandomForestRegressor

1000 5000 10000

0.0001

0.0002

0.0003

LinearGaussianNoise — LGBMRegressor

1000 5000 10000

0.0005

0.0010

0.0015

M
B

-R
F

I

RandomGPGaussianNoise — LinearRegression

1000 5000 10000

0.00150

0.00175

0.00200

0.00225

RandomGPGaussianNoise — RandomForestRegressor

1000 5000 10000

0.002

0.003

0.004

RandomGPGaussianNoise — LGBMRegressor

1000 5000 10000

1

2

3

M
B

-R
F

I

×10−5 PostNonLinearLaplace — LinearRegression

1000 5000 10000

0.00002

0.00004

0.00006

0.00008

0.00010

PostNonLinearLaplace — RandomForestRegressor

1000 5000 10000

0.00005

0.00010

0.00015

PostNonLinearLaplace — LGBMRegressor

1000 5000 10000

n

0.00

0.01

0.02

0.03

M
B

-R
F

I

PostNonLinearMultiplicativeHalfNormal — LinearRegression

1000 5000 10000

n

0.000

0.005

0.010

0.015

0.020

PostNonLinearMultiplicativeHalfNormal — RandomForestRegressor

1000 5000 10000

n

0.005

0.010

0.015

PostNonLinearMultiplicativeHalfNormal — LGBMRegressor

estimator

VanillaCNF

VanillaMDN

CondGauss

Figure 4.9: Median MB-RFIs for MSE risk and 95% CI with respect to different train sizes
n ∈ {1000, 5000, 10000} for three predictive models (the lower the better). Columns list differ-
ent predictive models and rows – different SCMs. Note, that y-axes are not shared across the
figure.

data-regimes. On contrary, for heavy-tailed PostNonLinearMultiplicativeHalfNor-
mal deep estimation is always preferred. In general, no single universally best deep
estimator can be chosen across SCMs (no free lunch).

RFI values. MB-RFI values mirror the collective performance of the predictive
model and estimated sampler. What will happen with RFI-values if we increase
train data size? For the correct predictive model class selection, MB-conditional
RFIs should tend to zero. Otherwise – under wrong or biased predictive model
selection, RFIs estimate some possibly non-zero importance, present in the weakly
relevant or irrelevant features. To illustrate this with synthetic benchmark datasets,
we plot the averaged MB-RFI values for MSE risk with respect to different train
data sizes n, predictive models and data generating SCMs on Figure 4.9 (MAE risk
shows the same tendencies). For example, under correctly specified model (Lin-
earGaussianNoise – LinearRegression) or for flexible enough LGBMRegressor RFI
values indeed decrease. On the other hand, the values for a limited model (Random-
ForestRegressor had a fixed maximum number of splits) stays relatively the same
(see middle column).

In Figure 4.10 we could analyse non-MB conditional RFIs, by looking at the
differences between non-MB-RFIs and MB-RFIs. The higher difference will mean
more reliance on the strongly relevant features, than on weakly or irrelevant. We
observe the differences stay almost the same for all the predictive model types and
samplers (a small increase is observed on the RandomGPGaussianNoise).

We show the estimated MB- and non-MB RFIs for SynTReN generator on Figure
4.11. VanillaCNF has the lowest average MB-RFI values and VanillaMDN seems
to overestimate them, even though they have nearly similar test NLL (see Figure
4.7). This means that NLL can be a misleading GoF, considering the low amount

30

4.1 Datasets with Known Causal Graph 31

1000 5000 10000

0.015

0.020

0.025

n
o
n

-M
B

-R
F

I
-

M
B

-R
F

I

LinearGaussianNoise — LinearRegression

1000 5000 10000

0.010

0.015

0.020

0.025

LinearGaussianNoise — RandomForestRegressor

1000 5000 10000

0.010

0.015

0.020

0.025

LinearGaussianNoise — LGBMRegressor

1000 5000 10000

0.05

0.10

0.15

n
o
n

-M
B

-R
F

I
-

M
B

-R
F

I

RandomGPGaussianNoise — LinearRegression

1000 5000 10000

0.1

0.2

0.3

RandomGPGaussianNoise — RandomForestRegressor

1000 5000 10000

0.1

0.2

0.3

RandomGPGaussianNoise — LGBMRegressor

1000 5000 10000

0.0000

0.0005

0.0010

0.0015

0.0020

n
o
n

-M
B

-R
F

I
-

M
B

-R
F

I

PostNonLinearLaplace — LinearRegression

1000 5000 10000

0.0005

0.0010

0.0015

0.0020

PostNonLinearLaplace — RandomForestRegressor

1000 5000 10000
0.0000

0.0005

0.0010

0.0015

0.0020

PostNonLinearLaplace — LGBMRegressor

1000 5000 10000

n

0

1

2

n
o
n

-M
B

-R
F

I
-

M
B

-R
F

I

PostNonLinearMultiplicativeHalfNormal — LinearRegression

1000 5000 10000

n

0

1

2

PostNonLinearMultiplicativeHalfNormal — RandomForestRegressor

1000 5000 10000

n

0

1

2

PostNonLinearMultiplicativeHalfNormal — LGBMRegressor

estimator

VanillaCNF

VanillaMDN

CondGauss

Figure 4.10: Median differences between non-MB-RFIs and MB-RFIs for MSE risk and 95% CI
with respect to different train sizes n ∈ {1000, 5000, 10000} for three predictive models (the higher
the better). Columns list different predictive models and rows – different SCMs. Note, that y-axes
are not shared across the figure.

of training data, present for SynTReN.
Now, we also want to check the empirical correlation between MB-RFIs and test

risk. We also use hue to visualise different goodness-of-fit values (see Figure 4.12)
and styles to mark three estimators. It easy to notice, how high is the empirical
correlation between test MSE loss and MB-RFI values for the synthetic benchmark,
meaning that predictive models with lower test risk, tend to have lower RFI values for
weakly relevant features, conditioning on strongly relevant. Additionally, we don’t
see noticeable patterns with respect to the different test NNL values for estimated
samplers, meaning that low NLL is not necessarily defining for RFI estimation. We
also observe the same trend across other GoF metrics.

Similar pattern can be observed for scatter plot for SynTReN dataset (Figure
4.13) – high correlation for VanillaCNF and CondGauss. However, now we can
notice an additional relation of test NLL and MB-RFI values, so that a good GoF
coincides with lower RFIs (but not necessarily lower test risk), for example in case
of combination VanillaCNF and LinearRegression. Notably, that low values of test
loss do not necessarily correspond to low values of MB-RFIs, as predictive models
can rely on weakly relevant features and still perform well, e.g. in cases of Random-
ForestRegressor and LGBMRegressor.

Study of enhancements. Based on Sachs-2005, we evaluated the following pos-
sible changes in the fitting process or architectures of vanilla methods:

1. We varied training mini-batch size B = 128 or B = 256. Note, that the vanilla
setting used all 682 train datapoints as one batch. Reducing batch size could
have a regularising effect on the optimiser.

2. Fine-tuning for both deep density estimators was performed with the help of

31

4. Evaluation and Results

MAE MSE

Test risk

10−4

10−3

10−2

10−1

M
B

-R
F

I
LinearRegression

MAE MSE

Test risk

10−4

10−3

10−2

10−1

RandomForestRegressor

MAE MSE

Test risk

10−3

10−2

10−1

LGBMRegressor

estimator

VanillaCNF

VanillaMDN

CondGauss

MAE MSE

Test risk

10−6

10−5

10−4

10−3

10−2

10−1

100

n
on

-M
B

-R
F

I

LinearRegression

MAE MSE

Test risk

10−6

10−5

10−4

10−3

10−2

10−1

100

RandomForestRegressor

MAE MSE

Test risk

10−5

10−4

10−3

10−2

10−1

100

LGBMRegressor

estimator

VanillaCNF

VanillaMDN

CondGauss

Figure 4.11: Box plots with MB-RFIs (first row, the lower the better) and non-MB-RFIs (second
row, the higher the better) for MSE / MAE risks for three predictive models on SynTReN datasets.
Note, that y-axes are logarithmically scaled and not shared across the figure.

10−7 10−6 10−5 10−4 10−3

MB-RFI

2× 10−2

3× 10−2

4× 10−2

6× 10−2

T
es

t
M

S
E

LinearGaussianNoise — LinearRegression

10−7 10−6 10−5 10−4 10−3

MB-RFI

3× 10−2

4× 10−2

6× 10−2

LinearGaussianNoise — RandomForestRegressor

10−7 10−6 10−5 10−4 10−3

MB-RFI

2× 10−2

3× 10−2

4× 10−2

6× 10−2

LinearGaussianNoise — LGBMRegressor

Test NLL

−0.2

−0.1

0.0

0.1

0.2

0.3

estimator

VanillaCNF

VanillaMDN

CondGauss

10−6 10−5 10−4 10−3 10−2

MB-RFI

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

T
es

t
M

S
E

RandomGPGaussianNoise — LinearRegression

10−6 10−5 10−4 10−3 10−2

MB-RFI

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

RandomGPGaussianNoise — RandomForestRegressor

10−6 10−5 10−4 10−3 10−2

MB-RFI

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

RandomGPGaussianNoise — LGBMRegressor

Test NLL

1.0

1.1

1.2

1.3

1.4

estimator

VanillaCNF

VanillaMDN

CondGauss

10−8 10−7 10−6 10−5 10−4 10−3

MB-RFI

10−4

10−3

10−2

T
es

t
M

S
E

PostNonLinearLaplace — LinearRegression

10−8 10−7 10−6 10−5 10−4 10−3

MB-RFI

10−4

10−3

10−2

PostNonLinearLaplace — RandomForestRegressor

10−8 10−7 10−6 10−5 10−4 10−3

MB-RFI

10−4

10−3

10−2

PostNonLinearLaplace — LGBMRegressor

Test NLL

−1.8

−1.2

−0.6

0.0

0.6

estimator

VanillaCNF

VanillaMDN

CondGauss

10−6 10−4 10−2 100 102 104

MB-RFI

10−4

10−3

10−2

10−1

100

101

102

T
es

t
M

S
E

PostNonLinearMultiplicativeHalfNormal — LinearRegression

10−6 10−4 10−2 100 102 104

MB-RFI

10−4

10−3

10−2

10−1

100

101

102

PostNonLinearMultiplicativeHalfNormal — RandomForestRegressor

10−6 10−4 10−2 100 102 104

MB-RFI

10−4

10−3

10−2

10−1

100

101

102

PostNonLinearMultiplicativeHalfNormal — LGBMRegressor

Test NLL

0.0

0.4

0.8

1.2

1.6

2.0

estimator

VanillaCNF

VanillaMDN

CondGauss

Figure 4.12: Scatter plot of MB-RFI values (averaged for each target) and test MSE risk for the
synthetic benchmark. Columns list different predictive models and rows – different SCMs. We can
spot a high level of correlation, between the predictive models’ performances and MB-RFIs. Note,
that both y-axes and x-axes are logarithmically scaled and not shared across the rows.

32

4.1 Datasets with Known Causal Graph 33

10−4 10−3 10−2

10−1

T
es

t
M

S
E

VanillaCNF — LinearRegression

10−4 10−3 10−2

10−1

VanillaCNF — RandomForestRegressor

10−3 10−2

10−1

VanillaCNF — LGBMRegressor

10−3 10−2 10−1

10−1

T
es

t
M

S
E

VanillaMDN — LinearRegression

10−3 10−2 10−1

10−1

VanillaMDN — RandomForestRegressor

10−3 10−2 10−1

10−1

VanillaMDN — LGBMRegressor

10−4 10−3 10−2

MB-RFI

10−1

T
es

t
M

S
E

CondGauss — LinearRegression

10−4 10−3 10−2

MB-RFI

10−1

CondGauss — RandomForestRegressor

10−3 10−2

MB-RFI

10−1

CondGauss — LGBMRegressor

Test NLL

0.0

0.4

0.8

1.2

Figure 4.13: Scatter plot of MB-RFI values (averaged for each target) and test MSE risk for
SynTReN dataset. Columns list different predictive models and rows – different density estimators.
Note, that both y-axes and x-axes are logarithmically scaled and not shared across the rows.

5-fold cross-validation with the NLL for every fitted feature of interest and con-
text. Hyper-parameter grid search encompassed 96 runs with varying amount
of noise regularisation, weight decay, number of epochs Ne and number of
layers (for CNFs) / number of components (for MDN).

3. As Sachs-2005 has only positive datapoints, we experiment with adding an
extra log-transformation as the first transformation of normalising flow4. This
aimed to restrict the support of flow transformations to only positive real
values.

We present the results of possible enhancements in Table 4.1, where we average
the test performances of all the samplers for both MB and non-MB conditional set-
tings. We notice, that only fine-tuning can give a solid improvement for VanillaCNF,
whereas batch size decrease have a steady effect on the performance of VanillaMDN.
Generally, MDNs reached the best GoF with an average NLL equal to 0.6547.

Setting V V & B = 128 V & B = 256 Fine-tuning V & Log-transform

CondGauss 1.2569 ± 0.174 – – – –
VanillaCNF 0.7619 ± 0.305 0.7836 ± 0.284 0.7210 ± 0.264 0.6824 ± 0.256 0.7482 ± 0.269
VanillaMDN 0.6704 ± 0.251 0.6547 ± 0.252 0.6602 ± 0.251 0.6573 ± 0.254 –

Table 4.1: Test negative log-likelihoods of different samplers, averaged between MB and non-MB
conditional settings for Sachs-2005 dataset. We report mean values and standard deviations. V
stays for Vanilla, B is a train batch size. Lower is better.

To see, how the advances in goodness-of-fit contribute to the RFI values, we
depict them on Box plot 4.14. No large difference was detected between differ-
ent versions of deep estimators and thus no practical need to fine-tune samplers.

4Also, in this case, one-sided additive inputs noise was employed, by using additional ReLU
transformation for Gaussian noise.

33

4. Evaluation and Results

V
V & B = 128

V & B = 256
Fine-tuning

V & Log-transform

Setting

10−4

10−3

10−2

10−1

M
B

-R
F

I

LinearRegression

V
V & B = 128

V & B = 256
Fine-tuning

V & Log-transform

Setting

10−4

10−3

10−2

10−1

RandomForestRegressor

V
V & B = 128

V & B = 256
Fine-tuning

V & Log-transform

Setting

10−2

10−1

LGBMRegressor

estimator

VanillaCNF

VanillaMDN

CondGauss

V
V & B = 128

V & B = 256
Fine-tuning

V & Log-transform

Setting

10−2

10−1

100

101

102

n
on

-M
B

-R
F

I

LinearRegression

V
V & B = 128

V & B = 256
Fine-tuning

V & Log-transform

Setting

10−1

100

101

RandomForestRegressor

V
V & B = 128

V & B = 256
Fine-tuning

V & Log-transform

Setting

10−1

LGBMRegressor

estimator

VanillaCNF

VanillaMDN

CondGauss

Figure 4.14: Box plots with MB-RFIs (first row, the lower the better) and non-MB-RFIs (second
row, the higher the better) for MSE risk for three predictive models on Sachs-2005 dataset. X-axes
vary different types of samplers enhancements. Note, that y-axes are logarithmically scaled and
not shared across the figure.

CondGauss, on the other hand, seems to have a bias from other samplers (in view
of much worse GoF – see Figure 4.7 and Table 4.1).

4.1.4 SAGE Results

To prove the viability of the deep density estimators for the other interpretability
method – SAGE (introduced in Section 3.1.2), we utilise a permutation-sampling-
based algorithm [12]. It randomly selects nP permutations of train features and then
perturbs joint sets of features nMC times, conditionally on other sets of features.
It sequentially adds features from dependent set to a context, in the order of a
permutation. Then, the Shapely importance estimate of feature j is simply the
average over all the risk differences, after this feature was moved from input to
context (see original paper for details). In all the experiments, we set number of
permutations nP = 20 and number of MC-samples nMC = 100.

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

Target variable

3.0

3.5

4.0

4.5

5.0

5.5

6.0

N
L

L

estimator

VanillaCNF

VanillaMDN

CondGauss

Figure 4.15: Mean and std NLL, averaged
across np = 20 permutations, of density
estimators, used for SAGE estimation on
Sachs-2005 dataset. Lower is better.

The experiments were conducted similarly
to RFI: we iterate over all the nodes of DAG,
select a target, fit predictive models with all
the other nodes as training features and then
compute SAGE values for all the training
features. The same set of predictive mod-
els (Linear Regression, Random Forest and
LightGBMRegressor) and density estimators
(CondGauss, VanillaCNF and VanillaMDN)
were evaluated. We report test NLL and es-
timated SAGE values, averaged across 5 ran-
dom seeds, which influence train/test split and
selected random permutations.

Test NLL are provided on Figure 4.15.
Clearly, both deep estimators are preferable
for this dataset, as in the case of RFI estima-
tion. We additionally saw that values of NNL decrease linearly with the decrease
of the number of dependent variables dY (a known property of likelihood), so that
averaged values are near 5.0 for CondGauss.

34

4.1 Datasets with Known Causal Graph 35

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
3
8

J
n

k

0.0

0.1

0.2

S
A

G
E

va
lu

es
Target variable = Raf — LinearRegression

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
3
8

J
n

k

0.0

0.1

0.2

Target variable = Raf — RandomForestRegressor

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
3
8

J
n

k

0.0

0.1

0.2
Target variable = Raf — LGBMRegressor

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
3
8

J
n

k

0.00

0.05

0.10

S
A

G
E

va
lu

es

Target variable = Mek — LinearRegression

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
3
8

J
n

k

0.00

0.05

0.10

0.15
Target variable = Mek — RandomForestRegressor

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
3
8

J
n

k

0.00

0.05

0.10

Target variable = Mek — LGBMRegressor

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

−0.01

0.00

0.01

S
A

G
E

va
lu

es

Target variable = Plcg — LinearRegression

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

−0.025

0.000

0.025

0.050

Target variable = Plcg — RandomForestRegressor

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

−0.02

0.00

0.02

0.04
Target variable = Plcg — LGBMRegressor

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.00

0.02

0.04

S
A

G
E

va
lu

es

Target variable = PIP2 — LinearRegression

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

−0.05

0.00

0.05

0.10

Target variable = PIP2 — RandomForestRegressor

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.00

0.05

Target variable = PIP2 — LGBMRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.00

0.02

0.04

S
A

G
E

va
lu

es

Target variable = PIP3 — LinearRegression

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0

1

2

Target variable = PIP3 — RandomForestRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.00

0.05

0.10

Target variable = PIP3 — LGBMRegressor

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
3
8

J
n

k

−1

0

1

S
A

G
E

va
lu

es

Target variable = Erk — LinearRegression

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
3
8

J
n

k

0.0

0.1

0.2

Target variable = Erk — RandomForestRegressor

R
a
f

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
3
8

J
n

k

0.0

0.1

0.2

0.3

Target variable = Erk — LGBMRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.0

0.1

S
A

G
E

va
lu

es

Target variable = Akt — LinearRegression

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.0

0.2

0.4

Target variable = Akt — RandomForestRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.0

0.2

0.4

Target variable = Akt — LGBMRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

−1

0

1

S
A

G
E

va
lu

es

Target variable = PKA — LinearRegression

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.0

0.1

0.2

Target variable = PKA — RandomForestRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.0

0.1

0.2

Target variable = PKA — LGBMRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.0

0.1

0.2

0.3

S
A

G
E

va
lu

es

Target variable = PKC — LinearRegression

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.0

0.1

0.2

0.3
Target variable = PKC — RandomForestRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.0

0.1

0.2

Target variable = PKC — LGBMRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.0

0.1

0.2

0.3

S
A

G
E

va
lu

es

Target variable = P38 — LinearRegression

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.0

0.2

Target variable = P38 — RandomForestRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

0.0

0.1

0.2

0.3

Target variable = P38 — LGBMRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

Feature of interest, j

0.000

0.025

0.050

S
A

G
E

va
lu

es

Target variable = Jnk — LinearRegression

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

Feature of interest, j

0.0

0.1

0.2
Target variable = Jnk — RandomForestRegressor

R
af

M
ek

P
lc

g

P
IP

2

P
IP

3

E
rk

A
k
t

P
K

A

P
K

C

P
38

J
n

k

Feature of interest, j

0.0

0.1

Target variable = Jnk — LGBMRegressor

estimator

VanillaCNF

VanillaMDN

CondGauss

Figure 4.16: Bar plots with estimated SAGE values for MAE risk for three predictive models on
Sachs-2005 dataset. Rows are different targets and columns – different predictive models. Note,
that y-axes are not shared across the figure.

35

4. Evaluation and Results

After estimating SAGE values for MAE risk (see Figure 4.16), we observe,
how estimated importances mirror the ground-truth connections of data-
generating DAG from Figure 6.3 (a), so that high SAGE values are assigned to
strongly relevant to the target features. Also, features with the highest SAGE are
the same for the majority of predictive models, while secondary features could differ,
for example, see SAGE values for target ’Plcg ’. Notably, values of weakly-/irrelevant
features are slightly below zero, and for VanillaMDN they are sometimes as far as
positive values (e.g. for targets ’PKA’ or ’Erk ’ in case of Linear Regression). We
hypothesise, that the main reason is that sampling from hugely multivariate distri-
bution can underestimate the real support of distribution and sampled values will
lay in a smaller range, in comparison to sampling from marginalised distributions.
So when one estimates the feature contribution, test risk can be even increased,
when comparing original and marginalised samplers perturbations. That is why the
choice of a good sampler is crucial for the correct estimation of SAGE values.

Additionally, although VanillaMDN had on average better GoF (see Figure 4.15),
it was still capable of generating false values. For example, feature ’PIP3 ’ had large
SAGE importance for target variable ’Erk ’ and LinearRegression, even though this
feature is completely irrelevant to the target. The main reason for that could be a
numerical instability of MDNs when parameters of mixture tend to infinity.

36

4.2 Sensetive Attributes 37

4.2 Sensetive Attributes

Census Income Dataset from UCI library [13] was used in several studies on SHAP
interpretability [17; 18; 59]. The task for the dataset is to predict, whether a per-
son had an income, larger than 50K$, based on census data. It contains 12 train
features: 8 categorical (’Age’, ’Country ’, ’Marital Status ’, ’Occupation’, ’Race’, ’Re-
lationship’, ’Sex ’, ’Workclass ’) and 4 continuous (’Capital Gain’, ’Capital Loss ’,
’Education-Num’, ’Hours per week ’). Train/test split consists of 26048 and 6513
datapoints respectively. [59] proposed a possible causal graph, where ’Age’, ’Race’,
’Sex ’ and ’Country ’ are root nodes, connected to target, and all the other variables
are mediators between roots and target.

Capital Gain
0.00

0.02

0.04

0.06

0.08

F
I

va
lu

e

G = [’Race’]
— VanillaCNF

Capital Gain
0.00

0.02

0.04

0.06

0.08

G = [’Race’]
— VanillaMDN

Capital Gain

Feature of interest

0.00

0.02

0.04

0.06

0.08

F
I

va
lu

e

G = [’Sex’]
— VanillaCNF

Capital Gain

Feature of interest

0.00

0.02

0.04

0.06

0.08

G = [’Sex’]
— VanillaMDN

Feature importance

PFI

RFIG

CFI

Figure 4.17: Wrong RFI values
for mixed-type ’Capital Gain’
feature: RFI and CFI are
higher, than PFI. Rows are
different excluded sensitive fea-
tures, columns – different CDE
estimators for ’Capital Gain’.

For Census Income dataset, we had to deal with
categorical features as both contextual and input vari-
ables. To use a categorical feature as a contextual vari-
able, we used one-hot encoding. Notably, that Gaus-
sian noise regularisation was still applicable in practice
for such a context. To model conditional categorical
distributions, we utilised CatEstimator from Section
3.3.3. The underlying neural network is defined in
the same way, as for VanillaMDN. We similarly used
noise regularisation with σx = 0.1 and Ne = 1000, but
slightly higher learning rate α = 0.005. Among other
preprocessing steps, we normalised continuous features
with a standard mean-std normalisation.

After the first feature importance evaluation, we
encountered the issue with ’Capital Gain’ variable, as
PFI for this feature was much lower than CFI and
RFIs (see Figure 4.17). The main reason for that
was ’Capital Gain’ having de-facto a mixed-type dis-
tribution with a non-zero point mass at x = 0.0. We
also noticed unnaturally low values of test NLL while
fitting conditional samplers, which supports the idea
of a wrong modelling approach (already mentioned in
3.3.3). Thus, we used a 50-bins discretizer and treated this feature as categorical.

As the main classification model, we used LightGBM classifier, which achieved
87.18% test accuracy (0.923 ROC-AUC), by using all the features. After excluding
some sensitive features, like ’Age’, ’Race’ or ’Sex ’, the performance dropped at most
to 86.38% (0.917 ROC-AUC, after exclusion of ’Age’).

4.2.1 RFI Results

We are interested in checking, whether sensitive attributes have a contribution to
the classifier, if they are included or excluded as the training features. We define
three sets of sensitive features: G1 = {’Age’} , G1 = {’Race’} and G3 = {’Sex ’}.

Now, we aim to evaluate:

• difference between PFI and RFIGi for train features of models, which used Gi

while training. Sensitive features could contribute either independently or as
interactions with other features.

37

4. Evaluation and Results

A
ge

C
ap

it
al

L
os

s

E
d

u
ca

ti
on

-N
u

m

H
ou

rs
p

er
w

ee
k

C
ap

it
al

G
ai

n

C
ou

n
tr

y

M
ar

it
al

S
ta

tu
s

O
cc

u
p

at
io

n

R
ac

e

R
el

at
io

n
sh

ip

S
ex

W
or

kc
la

ss

Feature of interest, j

−2

−1

0

1

2
N

L
L

Conditioning on sensitive G (RFI)

A
ge

C
ap

it
al

L
os

s

E
d

u
ca

ti
on

-N
u

m

H
ou

rs
p

er
w

ee
k

C
ap

it
al

G
ai

n

C
ou

n
tr

y

M
ar

it
al

S
ta

tu
s

O
cc

u
p

at
io

n

R
ac

e

R
el

at
io

n
sh

ip

S
ex

W
or

kc
la

ss

Feature of interest, j

Conditioning on −j (CFI), excluding sensitive G

A
ge

C
ap

it
al

L
os

s

E
d

u
ca

ti
on

-N
u

m

H
ou

rs
p

er
w

ee
k

C
ap

it
al

G
ai

n

C
ou

n
tr

y

M
ar

it
al

S
ta

tu
s

O
cc

u
p

at
io

n

R
ac

e

R
el

at
io

n
sh

ip

S
ex

W
or

kc
la

ss

Feature of interest, j

Conditioning on −j (CFI), including sensitive G

estimator

VanillaCNF

VanillaMDN

CatEstimator

G

[’Sex’]

[’Race’]

[’Age’]

Figure 4.18: Test NLL of estimators, which are to be used for RFI (left), CFI without sensitive
attributes in context (center) and CFI with sensitive attributes in context. Note, that ’Capital
Gain’ feature is discretised. Lower is better.

• difference between PFI and RFIGi for train features of models, which excluded
Gi. Even after features ignorance, we seek for any possible sensitive informa-
tion leakage through other features.

• CFIs in both before-mentioned cases, by conditioning on all respective training
features (for reference).

First, we present the goodness-of-fit results for three categories of samplers:
used for RFIs, used for CFIs without sensitive features and used for CFIs with
sensitive features (Figure 4.18). PFI simply shuffled test datapoints and thus no
samplers were fitted. We observe, that VanillaMDN outperformed VanillaCNF in
the majority of cases and thus, feature importances, estimated via VanillaMDN
should, in general, be more trusted.

Overall, feature importances between the classifier, which used sensitive at-
tributes, and the one, which ignored them, were relatively the same. This was
mainly due to the fact, that PFIs of sensitive features ’Sex ’ and ’Race’ were almost
zero and PFI of ’Age’ was just 2% (see Figure 4.19(a)). After exclusion of ’Age’,
test accuracy dropped on 0.8%, which makes the leakage of age information through
other features very unlikely.

After examining the RFI and PFI differences for e.g. test accuracy (see Fig-
ure 4.19(a-b)), we have found a slight difference between RFI values, generated by
VanillaMDN and VanillaCNF, for example for ’Hours per week ’ feature of inter-
est if G = {’Age’}. However, this discrepancy accounts only for nearly 0.5% of
accuracy and could be neglected. After all, one would trust the RFI values of a
sampler with a better GoF (see Figure 4.18(centre-right)), which is VanillaMDN
in the case of ’Hours per week ’. Also, ’Capital Loss ’ seems to have the difference
between PFIs and RFIs for all the contexts, but as we already discovered, it could
also be a mixed-type variable and should be excluded from analysis (or modelled via
discretisation). Thus, we do not observe any leakage of sensitive attributes
via other features if we include or even exclude them from training.

38

4.2 Sensetive Attributes 39

A
ge

C
a
p

it
a
l

L
o
ss

E
d

u
ca

ti
o
n

-N
u

m

H
ou

rs
p

er
w

ee
k

0.000

0.005

0.010

0.015

0.020

0.025

0.030

F
I

va
lu

e

G = [’Sex’] — VanillaCNF

A
ge

C
a
p

it
a
l

L
o
ss

E
d

u
ca

ti
o
n

-N
u

m

H
ou

rs
p

er
w

ee
k

0.000

0.005

0.010

0.015

0.020

0.025

G = [’Sex’] — VanillaMDN

C
ap

it
a
l

G
ai

n

C
o
u

n
tr

y

M
a
ri

ta
l

S
ta

tu
s

O
cc

u
p

at
io

n

R
a
ce

R
el

a
ti

o
n

sh
ip

S
ex

W
or

kc
la

ss

0.00

0.01

0.02

0.03

G = [’Sex’] — CatEstimator

A
ge

C
ap

it
a
l

L
o
ss

E
d

u
ca

ti
on

-N
u

m

H
ou

rs
p

er
w

ee
k

0.000

0.005

0.010

0.015

0.020

0.025

0.030

F
I

va
lu

e

G = [’Race’] — VanillaCNF

A
ge

C
ap

it
a
l

L
o
ss

E
d

u
ca

ti
on

-N
u

m

H
ou

rs
p

er
w

ee
k

0.000

0.005

0.010

0.015

0.020

0.025

0.030

G = [’Race’] — VanillaMDN

C
ap

it
al

G
ai

n

C
ou

n
tr

y

M
ar

it
al

S
ta

tu
s

O
cc

u
p

at
io

n

R
ac

e

R
el

a
ti

on
sh

ip

S
ex

W
or

kc
la

ss

0.00

0.01

0.02

0.03

G = [’Race’] — CatEstimator

A
ge

C
ap

it
al

L
os

s

E
d

u
ca

ti
on

-N
u

m

H
ou

rs
p

er
w

ee
k

Feature of interest, j

0.000

0.005

0.010

0.015

0.020

0.025

0.030

F
I

va
lu

e

G = [’Age’] — VanillaCNF

A
ge

C
ap

it
al

L
os

s

E
d

u
ca

ti
on

-N
u

m

H
ou

rs
p

er
w

ee
k

Feature of interest, j

0.000

0.005

0.010

0.015

0.020

0.025

G = [’Age’] — VanillaMDN

C
ap

it
al

G
ai

n

C
ou

n
tr

y

M
ar

it
al

S
ta

tu
s

O
cc

u
p

at
io

n

R
ac

e

R
el

at
io

n
sh

ip

S
ex

W
o
rk

cl
as

s

Feature of interest, j

0.00

0.01

0.02

0.03

G = [’Age’] — CatEstimator

Feature importance

PFI

RFIG

CFI

(a) Sensitive features are included while predictive mod-
elling.

A
ge

C
a
p

it
a
l

L
o
ss

E
d

u
ca

ti
o
n

-N
u

m

H
ou

rs
p

er
w

ee
k

0.000

0.005

0.010

0.015

0.020

0.025

0.030

F
I

va
lu

e

G = [’Sex’] — VanillaCNF

A
ge

C
a
p

it
a
l

L
o
ss

E
d

u
ca

ti
o
n

-N
u

m

H
ou

rs
p

er
w

ee
k

0.000

0.005

0.010

0.015

0.020

0.025

0.030
G = [’Sex’] — VanillaMDN

C
ap

it
a
l

G
ai

n

C
o
u

n
tr

y

M
a
ri

ta
l

S
ta

tu
s

O
cc

u
p

at
io

n

R
a
ce

R
el

a
ti

o
n

sh
ip

W
or

kc
la

ss

0.00

0.01

0.02

0.03

G = [’Sex’] — CatEstimator

A
ge

C
ap

it
a
l

L
o
ss

E
d

u
ca

ti
on

-N
u

m

H
ou

rs
p

er
w

ee
k

0.000

0.005

0.010

0.015

0.020

0.025

0.030

F
I

va
lu

e

G = [’Race’] — VanillaCNF

A
ge

C
ap

it
a
l

L
o
ss

E
d

u
ca

ti
on

-N
u

m

H
ou

rs
p

er
w

ee
k

0.000

0.005

0.010

0.015

0.020

0.025

G = [’Race’] — VanillaMDN

C
ap

it
al

G
ai

n

C
ou

n
tr

y

M
ar

it
al

S
ta

tu
s

O
cc

u
p

at
io

n

R
el

a
ti

on
sh

ip

S
ex

W
or

kc
la

ss

0.00

0.01

0.02

0.03

G = [’Race’] — CatEstimator

C
ap

it
al

L
os

s

E
d

u
ca

ti
on

-N
u

m

H
ou

rs
p

er
w

ee
k

Feature of interest, j

0.000

0.005

0.010

0.015

0.020

0.025

0.030

F
I

va
lu

e

G = [’Age’] — VanillaCNF

C
ap

it
al

L
os

s

E
d

u
ca

ti
on

-N
u

m

H
ou

rs
p

er
w

ee
k

Feature of interest, j

0.000

0.005

0.010

0.015

0.020

0.025

0.030

G = [’Age’] — VanillaMDN
C

ap
it

al
G

ai
n

C
ou

n
tr

y

M
ar

it
al

S
ta

tu
s

O
cc

u
p

at
io

n

R
ac

e

R
el

at
io

n
sh

ip

S
ex

W
o
rk

cl
as

s

Feature of interest, j

0.00

0.01

0.02

0.03

0.04
G = [’Age’] — CatEstimator

Feature importance

PFI

RFIG

CFI

(b) Sensitive features are ignored while predictive mod-
elling.

Figure 4.19: Bar plots of feature importances for Census Income dataset and LightGBM classifier
with respect to the test accuracy in two settings (with and without sensitive features as training
features, subfigures (a) and (b) respectively). Rows correspond to different sensitive sets (G1 =
{’Age’} , G1 = {’Race’} and G3 = {’Sex’}) and columns – to different types of samplers.

39

Section 5

Conclusion & Discussion

Both Mixture Density Networks and Conditional Normalising Flows provide a flex-
ible synthetic data generation tool, applicable in many real-world scenarios. Con-
taining a few parameters, they don’t suffer from overfitting (with the help of noise
regularisation) and do not require too much fine-tuning. We evaluated their usage
for two feature importance measures: RFI and SAGE.

We have discovered, that deep density estimators should be always preferred
over Gaussian conditional distribution in cases of heavy-tailed, multimodal or het-
eroscedastic distributions. One viable approach to detect such properties can be
a simple inspection of the pairwise scatter matrix of datapoints. The presence of
heavy-tails could also lead to wrong negative SAGE estimates, as the underestima-
tion of the real support is increasing with dimensionality increase.

Intuitively, one always aims to utilise RFI/SAGE values of the sampler with the
best goodness-of-fit value. But often, the difference between feature importances of
rigorously fine-tuned and vanilla models is negligible, meaning that all the samplers
produce roughly the same importances. We empirically evaluated it on Sachs-2005
dataset. Consequently, in terms of resources allocation – there is no need to spend
too much computational power to fit samplers and can concentrate on actual pre-
dictive modelling.

There was no prevalence of one deep estimator over the other, we can not define
one universally best sampler. Speaking about numerical stability although, CNFs
were performing better, as MDNs required some tuning of weight decay, otherwise
the optimisation led to the infinitely large mixture parameters – for example for
datasets with the heavy tails.

We provided a use case of both deep density estimators for detecting the influence
of sensitive attributes on UCI Census Income Dataset. In the case of discrete de-
pendent or contextual variables, conditional Gaussian distribution can not be used.
Also, we found, how modelling mixed-type distribution with a continuous estimator
could lead to wrong feature importances. Mixed-variable density estimation is still
an open research question and could be studied under future work.

40

References

[1] Aas, K., Jullum, M., & Løland, A. (2019). Explaining individual predictions
when features are dependent: More accurate approximations to shapley values.
arXiv preprint arXiv:1903.10464 .

[2] Aliferis, C. F., Tsamardinos, I., & Statnikov, A. (2003). Hiton: a novel markov
blanket algorithm for optimal variable selection. In Amia annual symposium
proceedings (Vol. 2003, p. 21).

[3] Andrews, D. W. (1997). A conditional kolmogorov test. Econometrica: Journal
of the Econometric Society , 1097–1128.

[4] Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adver-
sarial networks. In International conference on machine learning (pp. 214–223).

[5] Baird, L., Smalenberger, D., & Ingkiriwang, S. (2005). One-step neural network
inversion with pdf learning and emulation. In Proceedings. 2005 ieee interna-
tional joint conference on neural networks, 2005. (Vol. 2, pp. 966–971).

[6] Bishop, C. M. (1994). Mixture density networks.
[7] Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight

uncertainty in neural network. In International conference on machine learning
(pp. 1613–1622).

[8] Breiman, L. (2001). Random forests. Machine learning , 45 (1), 5–32.
[9] Candes, E., Fan, Y., Janson, L., & Lv, J. (2016). Panning for gold: Model-

x knockoffs for high-dimensional controlled variable selection. arXiv preprint
arXiv:1610.02351 .

[10] Chen, S. S., & Gopinath, R. A. (2000). Gaussianization. In Proceedings of
the 13th international conference on neural information processing systems (pp.
402–408).

[11] Child, R., Gray, S., Radford, A., & Sutskever, I. (2019). Generating long
sequences with sparse transformers. arXiv preprint arXiv:1904.10509 .

[12] Covert, I., Lundberg, S., & Lee, S.-I. (2020). Understanding global feature
contributions with additive importance measures.

[13] Dua, D., & Graff, C. (2017). UCI machine learning repository. Retrieved
from http://archive.ics.uci.edu/ml

[14] Durkan, C., Bekasov, A., Murray, I., & Papamakarios, G. (2019). Cubic-spline
flows. arXiv preprint arXiv:1906.02145 .

[15] Durkan, C., Bekasov, A., Murray, I., & Papamakarios, G. (2020, November).
nflows: normalizing flows in PyTorch. Zenodo. Retrieved from https://doi

.org/10.5281/zenodo.4296287 doi: 10.5281/zenodo.4296287
[16] Fenn, A. (2018). Lmu-master-thesis-latex-template. https://github.com/

amitfenn/LMU-Master-Thesis-LaTeX-Template. GitHub.
[17] Frye, C., de Mijolla, D., Begley, T., Cowton, L., Stanley, M., & Feige, I. (2020).

Shapley explainability on the data manifold. arXiv preprint arXiv:2006.01272 .

41

http://archive.ics.uci.edu/ml
https://doi.org/10.5281/zenodo.4296287
https://doi.org/10.5281/zenodo.4296287
https://github.com/amitfenn/LMU-Master-Thesis-LaTeX-Template
https://github.com/amitfenn/LMU-Master-Thesis-LaTeX-Template

REFERENCES

[18] Frye, C., Feige, I., & Rowat, C. (2019). Asymmetric shapley values: incor-
porating causal knowledge into model-agnostic explainability. arXiv preprint
arXiv:1910.06358 .

[19] Gretton, A., Borgwardt, K., Rasch, M. J., Scholkopf, B., & Smola, A. J.
(2008). A kernel method for the two-sample problem. arXiv preprint
arXiv:0805.2368 .

[20] Hellinger, E. (1909). Neue begründung der theorie quadratischer formen von
unendlichvielen veränderlichen. Journal für die reine und angewandte Mathe-
matik , 1909 (136), 210–271.

[21] Ho, J., Chen, X., Srinivas, A., Duan, Y., & Abbeel, P. (2019). Flow++:
Improving flow-based generative models with variational dequantization and
architecture design. In International conference on machine learning (pp. 2722–
2730).

[22] Ishwaran, H., Kogalur, U. B., Gorodeski, E. Z., Minn, A. J., & Lauer, M. S.
(2010). High-dimensional variable selection for survival data. Journal of the
American Statistical Association, 105 (489), 205-217. Retrieved from https://

doi.org/10.1198/jasa.2009.tm08622 doi: 10.1198/jasa.2009.tm08622
[23] Jitkrittum, W., Kanagawa, H., & Schölkopf, B. (2020). Testing goodness of

fit of conditional density models with kernels. In Conference on uncertainty in
artificial intelligence (pp. 221–230).

[24] Kamthe, S., Assefa, S., & Deisenroth, M. (2021). Copula flows for synthetic
data generation. arXiv preprint arXiv:2101.00598 .

[25] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., . . . Liu, T.-Y.
(2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances
in neural information processing systems , 30 , 3146–3154.

[26] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 .

[27] König, G., Molnar, C., Bischl, B., & Grosse-Wentrup, M. (2020). Relative
feature importance. arXiv preprint arXiv:2007.08283 .

[28] Lachapelle, S., Brouillard, P., Deleu, T., & Lacoste-Julien, S. (2019). Gradient-
based neural dag learning. arXiv preprint arXiv:1906.02226 .

[29] Lu, S., Zhu, Y., Zhang, W., Wang, J., & Yu, Y. (2018). Neural text generation:
Past, present and beyond. arXiv preprint arXiv:1803.07133 .

[30] Lundberg, S., & Lee, S.-I. (2017). A unified approach to interpreting model
predictions. arXiv preprint arXiv:1705.07874 .

[31] Maaten, L., Chen, M., Tyree, S., & Weinberger, K. (2013). Learning with
marginalized corrupted features. In International conference on machine learn-
ing (pp. 410–418).

[32] Mase, M., Owen, A. B., & Seiler, B. (2019). Explaining black box decisions
by shapley cohort refinement. arXiv preprint arXiv:1911.00467 .

[33] Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784 .

[34] Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies
to evaluate statistical methods. Statistics in medicine, 38 (11), 2074–2102.

[35] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT
press.

[36] Paluszynska, A., Biecek, P., & Jiang, Y. (2020). randomforestexplainer:
Explaining and visualizing random forests in terms of variable importance

42

https://doi.org/10.1198/jasa.2009.tm08622
https://doi.org/10.1198/jasa.2009.tm08622

REFERENCES 43

[Computer software manual]. Retrieved from https://CRAN.R-project.org/

package=randomForestExplainer (R j package version 0.10.1)
[37] Parr, W. C., & Schucany, W. R. (1980). Minimum distance and robust

estimation. Journal of the American Statistical Association, 75 (371), 616–624.
[38] Pearson, K. (1900). X. on the criterion that a given system of deviations

from the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50 (302),
157–175.

[39] Pellet, J.-P., & Elisseeff, A. (2008). Using markov blankets for causal structure
learning. Journal of Machine Learning Research, 9 (7).

[40] Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing
flows. In International conference on machine learning (pp. 1530–1538).

[41] Rizzo, M. L., & Székely, G. J. (2016). Energy distance. wiley interdisciplinary
reviews: Computational statistics , 8 (1), 27–38.

[42] Rothfuss, J., Ferreira, F., Boehm, S., Walther, S., Ulrich, M., Asfour, T.,
& Krause, A. (2019). Noise regularization for conditional density estimation.
arXiv preprint arXiv:1907.08982 .

[43] Rothfuss, J., Ferreira, F., Walther, S., & Ulrich, M. (2019). Conditional
density estimation with neural networks: Best practices and benchmarks. arXiv
preprint arXiv:1903.00954 .

[44] Rüschendorf, L. (2009). On the distributional transform, sklar’s theorem,
and the empirical copula process. Journal of statistical planning and inference,
139 (11), 3921–3927.

[45] Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., & Nolan, G. P. (2005).
Causal protein-signaling networks derived from multiparameter single-cell data.
Science, 308 (5721), 523–529.

[46] Salmerón, A., Rumı́, R., Langseth, H., Nielsen, T. D., & Madsen, A. L. (2018).
A review of inference algorithms for hybrid bayesian networks. Journal of Ar-
tificial Intelligence Research, 62 , 799–828.

[47] Scutari, M. (2010). Learning bayesian networks with the bnlearn R pack-
age. Journal of Statistical Software, 35 (3), 1–22. Retrieved from http://

www.jstatsoft.org/v35/i03/

[48] Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representa-
tion using deep conditional generative models. Advances in neural information
processing systems , 28 , 3483–3491.

[49] Strittmatter, W. (1989). Measures of dependence for processes in metric
spaces. Stochastics: An International Journal of Probability and Stochastic
Processes , 27 (1), 33–50.

[50] Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008).
Conditional variable importance for random forests. BMC bioinformatics , 9 (1),
1–11.

[51] Tabak, E. G., Vanden-Eijnden, E., et al. (2010). Density estimation by dual
ascent of the log-likelihood. Communications in Mathematical Sciences , 8 (1),
217–233.

[52] Theis, L., Oord, A. v. d., & Bethge, M. (2015). A note on the evaluation of
generative models. arXiv preprint arXiv:1511.01844 .

[53] Tran, D., Vafa, K., Agrawal, K. K., Dinh, L., & Poole, B. (2019). Dis-

43

https://CRAN.R-project.org/package=randomForestExplainer
https://CRAN.R-project.org/package=randomForestExplainer
http://www.jstatsoft.org/v35/i03/
http://www.jstatsoft.org/v35/i03/

REFERENCES

crete flows: Invertible generative models of discrete data. arXiv preprint
arXiv:1905.10347 .

[54] Trippe, B. L., & Turner, R. E. (2018). Conditional density estimation with
bayesian normalising flows. arXiv preprint arXiv:1802.04908 .

[55] Uria, B., Murray, I., & Larochelle, H. (2013). Rnade: The real-valued neural
autoregressive density-estimator. arXiv preprint arXiv:1306.0186 .

[56] Van den Broeck, G., Lykov, A., Schleich, M., & Suciu, D. (2021). On the
tractability of shap explanations.

[57] Van den Bulcke, T., Van Leemput, K., Naudts, B., van Remortel, P., Ma, H.,
Verschoren, A., . . . Marchal, K. (2006). Syntren: a generator of synthetic gene
expression data for design and analysis of structure learning algorithms. BMC
bioinformatics , 7 (1), 1–12.

[58] Vergari, A., Choi, Y., Peharz, R., & Van den Broeck, G. (2020). Probabilistic
circuits: Representations, inference, learning and applications. In Tutorial at
the the 34th aaai conference on artificial intelligence.

[59] Wang, J., Wiens, J., & Lundberg, S. (2020). Shapley flow: A graph-based
approach to interpreting model predictions. arXiv preprint arXiv:2010.14592 .

[60] Wang, M., Chen, X., & Zhang, H. (2010). Maximal conditional chi-square
importance in random forests. Bioinformatics , 26 (6), 831–837.

[61] Weng, L. (2018). Flow-based deep generative models. lilianweng.github.io/lil-
log . Retrieved from http://lilianweng.github.io/lil-log/2018/10/13/

flow-based-deep-generative-models.html

[62] Winkler, C., Worrall, D., Hoogeboom, E., & Welling, M. (2019). Learning like-
lihoods with conditional normalizing flows. arXiv preprint arXiv:1912.00042 .

[63] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learn-
ing deep features for discriminative localization. In Proceedings of the ieee
conference on computer vision and pattern recognition (pp. 2921–2929).

44

http://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
http://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Appendix

A.1 RFI for Multiple Linear Regression

Proof. Generalisation risk for multiple linear regression, defined via MSE, is directly
related to a mean squared error of prediction (MSPE):

R = E(Y,XR)

[
l
(
Y, h∗(XR)

)]
= EXR MSPEXR

MSPEXR = EY∼Y/XR
(
Y − hβ̂(XR))

)2

Note, that estimated parameters are also random: β̂ = β̂(Y,XR)

We can also define the MSPE for the whole train and test design matrices (X,X∗),
which serves as a MC-estimate of generalisation risk:

MSPEX,X∗ =
1

n∗
Ey∗/X∗,y/X

∥∥∥y∗ − hβ̂(y,X)(X
∗)
∥∥∥2

2
=
[
i.i.d.

]
= (6.1)

=
1

n∗

n∗∑
i=1

EY ∗
i ∼Y/x∗(i),y/X

(
Y ∗i − hβ̂(y,X)(x

∗(i))
)2

(6.2)

R =EX,X∗∼p(xR) MSPEX,X∗ (6.3)

where ‖ · ‖2 is L2-norm of random vector.

Following the lecture notes 1, MSPEX,X∗ can be calculated for the linear regres-
sion:

MSPEX,X∗ =
1

n∗
tr(X∗TX∗Σβ̂) + σ2, where Σβ̂ = σ2(XTX)−1 (6.4)

It can be shown, that when keeping:

X∗TX∗

n∗
≈ XTX

n
= Ĉov(XR) (6.5)

the first term disappears:

MSPEX,X∗ −−−→
n→∞

σ2 (6.6)

Note, that by increasing n, we also increase n∗.

To calculate an analytic value of RFIGj , we need to find a risk with a resampled

replacement variable j. Let X̃∗ be a test design matrix with conditionally resam-
pled variable j. Then Mean squared prediction error of resampled design matrix

1http://dept.stat.lsa.umich.edu/∼kshedden/Courses/Regression Notes/prediction.pdf

45

http://dept.stat.lsa.umich.edu/~kshedden/Courses/Regression_Notes/prediction.pdf

Appendix

MSPEX,X̃∗ is:

MSPEX,X̃∗ =
1

n∗
E
∥∥∥y∗ − X̃∗β̂

∥∥∥2

2
=

1

n∗
E
∥∥∥X∗β − X̃∗β̂

∥∥∥2

2
+

1

n∗
E ‖ε‖2

2 = (6.7)

=
1

n∗

n∗∑
i=1

E
(
βTx∗(i) − β̂T x̃∗(i)

)2
+ σ2 (6.8)

where x∗(i) and x̃∗(i) are original test datapoint and datapoint with replaced variable
j. Here, subscripts for conditional expectation are dropped for clarity, but they are
the same, as in 6.1. The only random quantity is now the estimated parameters β̂.

Let’s try to break down this expectation, by partitioning the vectors (R \ j is
marked as −j, indices of sample (i) are dropped as well):

E
(
βTx∗ − β̂T x̃∗

)2
= E

(
x∗jβj + βT−jx

∗
−j − x̃∗j β̂j − β̂T−jx∗−j

)2
=

= E
[
(x∗jβj − x̃∗j β̂j)2 + (x∗T−j

(
β−j − β̂−j)

)2 − 2
(
x∗jβj − x̃∗j β̂j

)
·
(
x∗T−j(β−j − β̂−j)

)]
=

= ∗1 + ∗2 + ∗3

∗1 = E(x∗jβj − x̃∗j β̂j)2 = E(x∗jβj)
2 + E(x̃∗j β̂j)

2 − 2E(x∗jβj)(x̃
∗
j β̂j) =

= (x∗jβj)
2 + x̃∗2j

(
Var(β̂j) + β2

j

)
− 2x∗j x̃

∗
jβ

2
j =

= β2
j (x
∗2
j + x̃∗2j − 2x∗j x̃j) + x̃∗2j Var(β̂j) = β2

j (x
∗
j − x̃∗j)2 + x̃∗2j Var(β̂j)

∗2 = E(x∗T−j
(
β−j − β̂−j)

)2
=
[
... the same as MSPEX:,−j,X:,−j

∗ with excluded feature j
]

∗3 = −2E(x∗jβj − x̃∗j β̂j)(x∗T−j(β−j − β̂−j)) =

= −2(x∗jβj) · x∗T−j E(β−j − β̂−j) + 2x̃∗j · E β̂j(x∗T−j(β−j − β̂−j)) =
[
E(β−j − β̂−j) = 0

]
=

= 2x̃∗j · E β̂j
∑
i 6=j

(
xi(βi − β̂i)

)
= 2x̃∗j ·

(∑
i 6=j

βiβjxi −
∑
i 6=j

xi E β̂iβ̂j
)

=

= 2x̃∗j ·
(∑

i 6=j

βiβjxi −
∑
i 6=j

xi
(

Cov(β̂i, β̂j) + βiβj
))

= −2x̃∗j ·
∑
i 6=j

xi Cov(β̂i, β̂j) =

= −2x̃∗j(x
∗T
−jΣβ̂j,−j

)

Putting everything together to 6.7 and transforming back matrix form:

MSPEX,X̃∗ =
β2
j

n∗

∥∥∥X∗:,j − X̃∗:,j

∥∥∥2

2
+

Var(β̂j)

n∗

∥∥∥X̃∗:,j

∥∥∥2

2
+

+
1

n∗
tr(X∗T:,−jX

∗
:,−jΣβ̂−j,−j

)− 2

n∗
X̃∗T:,j X∗:,−jΣβ̂j,−j

+ σ2 (6.9)

When the condition 6.5 is satisfied, it easy to see that for increasing n:

1

n∗
tr(X∗T:,−jX

∗
:,−jΣβ̂−j,−j

)− 2

n∗
X̃∗T:,j X∗:,−jΣβ̂j,−j

−−−→
n→∞

0 (6.10)

Let’s now compute the expectation of MSPEX,X̃∗ , if we know, that X is the i.i.d.

sample from p(xR) and X̃∗ – sequentially sampled from p(xR) and then column j is

46

A.2 Gradient-descent MLE with Noise Regularisation 47

replaced with p(xj/xG = X∗:,G) respectively:

Rj/G = EX,X̃∗∼p(xR);X̃∗
:,j∼p(xj/xG=X∗

:,G) MSPEX,X̃∗ ≈

≈ β2
j

n∗
E
∥∥∥X∗:,j − X̃∗:,j

∥∥∥2

2
+

Var(β̂j)

n∗
E
∥∥∥X̃∗:,j

∥∥∥2

2
+ σ2 =

[
i.i.d.

]
=

= β2
jE(X̃j −Xj)

2 + Var(β̂j)E X̃j + σ2 =

[
Var(β̂j) −−−→

n→∞
0

]
=

= β2
j

(
E X̃2

j − 2EXjX̃j + EX2
j

)
+ σ2 =

= β2
j

(
Var(X̃j) + (E X̃j)

2 + Var(Xj) + (EXj)
2 − 2 Cov(X̃j, Xj)− 2EXj E X̃j

)
+ σ2 =

= 2β2
j

(
Var(Xj)− Cov(X̃j, Xj)

)
+ σ2

Thus, incorporating 6.6:

RFIGj = R̃j/G −R ≈ 2β2
j (Var(Xj)− Cov(Xj, Xj)) (6.11)

In the case ofXR having a multivariate Gaussian distributionXR ∼ N(µXR ,ΣXR),
the conditional distribution of replacement variable has the form:

X̃j/XG = ε ∗
√

Σjj − ΣjGΣ−1
GGΣGj + ΣjGΣ−1

GGΣG, ε ∼ N(0, 1) (6.12)

where Σjj,ΣjG,ΣGj,ΣGG is a partitioning of matrix ΣXR . With a true conditional
sampler in the reparametrised form as in 6.12, it is easy to calculate:

Cov(X̃j, Xj) = Cov(ΣjGΣ−1
GGXG, Xj) = ΣjGΣ−1

GGΣGj

Var(Xj) = Σjj

So, the RFI will have the formula:

RFIGj ≈ 2βi
(
Σjj − ΣjGΣ−1

GGΣGj

)
(6.13)

A.2 Gradient-descent MLE with Noise Regulari-

sation

The algorithm is used in the thesis as the main regularisation technique for Con-
ditional density estimation with neural networks. Gaussian distribution is used to

47

Appendix

generate noise in all the experiments.

Algorithm 1: Mini-batch gradient-descent MLE with Normal Noise Reg-
ularisation

Input : Train data D = {(y(1), x(1)), ..., (y(n), x(n))}; number of epochs Ne;
mini-batch size B; noise standard deviations σy, σx; learning rate
α

Output: Fitted parameters θ̂
Initialize θ;
for epoch = 1 to Ne do

for batch = 1 to n divB do
Sample minibatch {(y(1), x(1)), ..., (y(B), x(B))} ⊂ D;
for j = 1 to B do

Sample noise ξy ∼ N(0, σ2
yI) and ξx ∼ N(0, σ2

xI);

Perturb batch: ỹ(j) = y(j) + ξy x̃(j) = x(j) + ξx
end

Gradient descent step: θ ← θ + α∇θ
1
b

∑b
j=1 log fθ(ỹ

(j)/x̃(j))

end

end

θ̂ ← θ

A.3 Radial flow

Jacobian and determinant of Jacobian. Using the same R = (Z − γ):

d

dZ

(
Z +

αβR

α + ‖R‖2

)
= I +

d

dZ

(αβR

α + ‖R‖2

)
=

[
Chain rule

]
=

= I+
αβ

α + ‖R‖2

I+αβR
d

dZ

(1

α + ‖R‖2

)
=

[
Jacobian of L2-norm:

d‖X‖2

dX
=

X

‖X‖2

]
=

=
(

1 +
αβ

α + ‖R‖2

)
I − αβ

‖R‖2(α + ‖R‖2)2
RRT

det
dt

dZ
=

[
Matrix determinant lemma

]
=

=

(
1− αβ

‖R‖2(α + ‖R‖2)2
·
(

1 +
αβ

α + ‖R‖2

)−1

RTR

)
· det

(
1 +

αβ

α + ‖R‖2

)
I =

=

(
1 +

αβ

α + ‖R‖2

)dZ−1

·
(

1 +
αβ

α + ‖R‖2

− αβ

‖R‖2(α + ‖R‖2)2
RTR

)
=

=

[
RTR = ‖R‖2

2

]
=

(
1 +

αβ

α + ‖R‖2

)dZ−1

·
(

1 +
αβ

α + ‖R‖2

− αβ‖R‖2

(α + ‖R‖2)2

)
=

=

(
1 +

αβ

α + ‖R‖2

)dZ−1

·
(

1 +
α2β

(α + ‖R‖2)2

)

48

A.3 Radial flow 49

Inverse transformation. Assuming α and β satisfy contraints: α > 0, β > −1,
one wants to solve the following equation with respect to Z:

t(Z) = Z +
αβ(Z − γ)

α + ‖Z − γ‖2

Let’s use R = Z − γ, then:

t(Z) = R + γ +
αβR

α + ‖R‖2

⇐⇒

⇐⇒ t(Z)− γ = R

(
1 +

αβ

α + ‖R‖2

)

As α > 0 and β > −1:

(
1 + αβ

α+‖R‖2

)
> 0. Then, we can write R as:

R =

(
1 +

αβ

α + ‖R‖2

)−1

(t(Z)− γ) (6.14)

After applying L2-norm to both parts we can solve a quadratic equation with respect
to ‖R‖2:

‖R‖2 =

(
1 +

αβ

α + ‖R‖2

)−1

‖t(Z)− γ‖2 ⇐⇒

⇐⇒ ‖R‖2
2 + ‖R‖2(α + αβ − ‖t(Z)− γ‖2)− α‖t(Z)− γ‖2 = 0 ⇐⇒

⇐⇒
{
‖R‖2 = −1

2
(α + αβ − ‖t(Z)− γ‖2) + 1

2

√
D

D = (α + αβ − ‖t(Z)− γ‖2)2 + 4α‖t(Z)− γ‖2

Thus, we can evaluate R from 6.14 and consequently Z:

Z =

(
1 +

αβ

α− 1
2
(α + αβ − ‖t(Z)− γ‖2) + 1

2

√
D

)−1

(t(Z)− γ) + γ (6.15)

49

Appendix

A.4 Evaluation protocol

Algorithm 2: RFI Evaluation protocol for data with a known causal DAG
Input : Causal DAG G (p nodes and m edges); Train data D, test data D∗.
Output: Test risks, test log-likelihood, test HD, KL and JS (if SCM is known), averaged

RFI
MB(Xi)
j and RFI

non-MB(Xi)
j across j.

for Xi ∈ G do
Fit predictive models with D for target Xi and features X−i;
Report test risks for each predictor based on D∗;
for Xj ∈ non-MB(Xi) do

Fit conditional sampler for input Xj and context MB(Xi) on D: fθ̂(xj/MB(xi));
Report test log-likelihood of sampler;
if SCM is known and MB(Xj) ⊆ MB(Xi) or SCM is LinearGaussianNoise then

Infere approximate / exact p̃(xj/MB(xj));
Report test HD, KL and JS between fθ̂(xj/MB(xi)) and
p(xj/MB(xi)) = p̃(xj/MB(xj));

end

Use sampler to estimate RFI
MB(Xi)
j for each predictor and risk;

end

Report averaged RFI
MB(Xi)
j across j;

for Xj ∈ MB(Xi) do
Fit conditional sampler for input Xj and context non-MB(Xi) on D:
fθ̂(xj/ non-MB(xi));

Report test log-likelihood of sampler;
if SCM is LinearGaussianNoise then

Infere exact p(xj/ non-MB(xi));
Report test HD, KL and JS between fθ̂(xj/ non-MB(xi)) and
p(xj/ non-MB(xj));

end

Use sampler to estimate RFI
non-MB(Xi)
j for each predictor and risk;

end

Report averaged RFI
non-MB(Xi)
j across j;

end

A.5 Markov-Blanket conditional distribution

Credits to the discussion2, by applying Bayes’ rule to children of Xi and using d-
separation properties:

p(xi/MB(xi)) = p(xi/Paxi ,Chxi ,PaChxi
) =

=
p(Chxi/xi,Paxi ,PaChxi

) · p(xi/Paxi ,PaChxi
)∫

Xi p(Chxi/xi,Paxi ,PaChxi
) · p(xi/Paxi ,PaChxi

) dxi
=

=
p(Chxi/PaChxi

, xi) · p(xi/Paxi)∫
Xi p(Chxi/PaChxi

, xi) · p(xi/Paxi) dxi
=

=
p(xi/Paxi) ·

∏
xj∈Chxi

p(xj/Paxj , xi)∫
Xi p(x/Pax) ·

∏
xj∈Chx

p(xj/Paxj , xi) dxi
2https://stats.stackexchange.com/questions/108790/markov-blanket-conditional-distribution-

derivation

50

https://stats.stackexchange.com/questions/108790/markov-blanket-conditional-distribution-derivation
https://stats.stackexchange.com/questions/108790/markov-blanket-conditional-distribution-derivation

A.6 Pairwise scatter-matrices for datasets with known causal DAG 51

A.6 Pairwise scatter-matrices for datasets with

known causal DAG

X0

X1

X2

X3

X4

Random Causal DAG G, sampled from G(5, 10). Common for all underlying SCMs.

(a) LinearGaussianNoise (b) RandomGPGaussianNoise

(c) PostNonLinearLaplace (d) PostNonLinearMultiplicativeHalfNormal

Figure 6.1: Pairwise scatter-matrix of synthetic data, sampled from four structural causal models.
Orange scatter points (test subset, n∗ = 1000) are overlaid over blue (train, n = 1000). Rows and
columns are ordered alphabetically.

51

Appendix

X0

X1

X2

X3

X4

X5
X6

X7

X8

X9

X10

X11

X12

X13

X14
X15

X16

X17

X18

X19

(a) One out of ten ground-
truth causal DAGs.

(b) Pairwise scatter-matrix of semi-synthetic data, sampled from
SynTReN generator (one of ten DAGs). Orange scatter points
(test subset, n∗ = 100) are overlaid over blue (train, n = 400).
Rows and columns are ordered alphabetically.

Figure 6.2: SynTReN dataset visual characteristics.

Raf

Mek

Plcg
PIP2

PIP3

Erk

Akt

PKA

PKC
P38

Jnk

(a) Ground-truth causal DAG of Sachs-
2005 dataset.

(b) Pairwise scatter-matrix of Sachs-2005 dataset. Orange
scatter points (test subset, n∗ = 171) are overlaid over blue
(train, n = 682).

Figure 6.3: Sachs-2005 visual characteristics.

52

A.7 CNF and MDN results reproduction for UCI benchmark 53

A.7 CNF and MDN results reproduction for UCI

benchmark

We successfully reproduced the results of the paper on noise regularisation for CNF
and MDN estimators [42] on three UCI benchmarks [13]: Boston (dX = 13, dY =
1, n = 405), Concrete (dX = 8, dY = 1, n = 824) and Energy (dX = 9, dY = 1, n =
615).

Boston Concrete Energy

Dataset

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

L
og

-l
ik

el
ih

o
o
d

Estimator
CNF

CNF (Repr)

CondGauss (Repr)

MDN

MDN (Repr)

Figure 6.4: Reproduction of results from
[42]: mean and std of test log-likelihood
for Boston, Concrete and Energy datasets
(higher is better).

We report mean and standard deviation
for log-likelihood (see Figure 6.4), calculated
on three 20% test hold-out subsets and five
random seed initialisations of weights. For
CNF and MDN, we performed a small 5-fold
hyperparameter selection, based on train
subset, and then retrained the best con-
figuration with different initialisation seeds.
Hyperparameters grid for both CNF and
MDN encompassed 324 runs with varying in-
puts and context noise deviation, number of
epochs, number of transformations/mixture
components, number of hidden units and
weight decay. Other parameters, such as
learning rate or optimiser, are kept the same
(see VanillaCNF and VanillaMDN, Section
4). As a sanity check, we add a performance
of CondGauss model (introduced in Section
4) on 15 20% test hold-out datasets.

We observe, that (1) both neural estima-
tors outperformed the simple CondGauss model on all the datasets and (2) we
achieved similar performance with a smaller grid search, compared to the original
paper.

53

	Declaration of Independence
	Abstract
	Acknowledgements
	Abbreviations & Notation
	Introduction
	Related work
	Methods
	Interpretability Methods
	Relative Feature Importance
	Shapley Additive Global Importance

	Density Estimation
	General Task
	Model Selection

	Deep Conditional Density Estimators
	Conditional Normalising Flows
	Mixture Density Networks
	Categorical & Mixed Estimation

	Evaluation and Results
	Datasets with Known Causal Graph
	Structural Causal Models Datasets
	Semi-synthetic and Real Datasets
	RFI Results
	SAGE Results

	Sensetive Attributes
	RFI Results

	Conclusion & Discussion
	References
	Appendix
	RFI for Multiple Linear Regression
	Gradient-descent MLE with Noise Regularisation
	Radial flow
	Evaluation protocol
	Markov-Blanket conditional distribution
	Pairwise scatter-matrices for datasets with known causal DAG
	CNF and MDN results reproduction for UCI benchmark

