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Intro – Interpretability

Feature importance (FI)

scores how much feature contributes to model’s
performance/prediction variance

Main focus of thesis: post-hoc model-agnostic
global feature importance

I post-hoc – applied to fitted model

I model-agnostic – not bound to specific model class

I global – feature contribution to the overall
performance (not to the individual prediction)
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Two stages of interpretability: fitting the model
and inferring feature importances
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Intro – Perturbation-based feature importances

Feature importance is a difference of generalisation risks
of original model and model with perturbed feature
(replacement variable).

Permutation Feature Importance (PFI)

Replacement variable is sampled independently from
marginal:

X̃j ∼ p(xj)

Conditional Feature Importance (CFI)

Replacement variable is sampled conditionally on all the
other features:

X̃j ∼ p(xj/x−j)

Black-box
Predictive
Model

Black-box
Predictive
Model
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Intro – Perturbation-based feature importances

Interpretation – destruction of relationship between feature and target:

I PFI has connection to interventional importance

I CFI estimates observational importance (ultimate importance of feature, if one
knows values of all other features)

Relative Feature Importance (RFI) [König et al., 2020]

Replacement variable is sampled conditionally on some subset of features G , ranging
from empty to full subset (also unused features):

X̃j ∼ p(xj/xG )
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Intro – Importances via restricted models

Other possibility to infer feature importance – use
marginalised (restricted on set of features S) predictions of
model:

hS(xS) = EXS∼p(xS/xS ) h(xS ,XS)

Then, individual / collective feature importance is defined
as reduction in risk over the average prediction.

Intrinsically, to estimate restricted model, we also perform
conditional sampling:

X̃S ∼ p(xS/xS)

Average
Prediction

Restricted
Black-box
Model
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Intro – Collective feature importances

Collective feature importances can be calculated for all the
possible subsets → computational issues due to an
exponential number of subsets

Shapley Additive Global Importance (SAGE)
[Covert et al., 2020]

Additive individual importances φj , which approximate
conditional collective contributions of feature sets.

SAGE estimates require a linear number of evaluations.
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Intro – Research Gap

Unrealistic assumptions

Replacement variable / set of variables are sampled from unrealistical conditional
distributions:

I RFI experimented with multivariate Gaussian data & used conditional Gaussian
distribution → complex distributions?

I SAGE assumed features are independent and sampled from marginal distribution
→ unrealistic, off-manifold data generation!

Attempts to mitigate the problem for local SAGE (SHAP):
I [Frye et al., 2020] – conditional VAE
I [Aas et al., 2019] – conditional Gaussian, Gaussian copula, kernel estimates
I [Mase et al., 2019] – selection of existing datapoints via similarity function

No empirical studies on how goodness-of-fit of an estimated sampler is related
to FI inference.
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Intro - Contribution

We propose to use deep density estimator with tractable likelihood for conditional
sampling in global feature importance estimation:

I We utilise Conditional Normalising Flows (CNFs) and Mixture Density Networks
(MDNs) (concurrent method)

I We empirically study, how goodness-of-fit and different distributional properties
translates to the validity of estimated RFI and SAGE values, based on
self-designed benchmark

I We provide the use case of deep samplers for detecting the influences of sensitive
attributes

I Code contributions: extension of RFI Python library (deep density estimators,
synthetic benchmark)
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Overview of Methods – Conditional Normalising Flow

Conditional Normalising Flow (CNF)
[Trippe and Turner, 2018,
Winkler et al., 2019] – a series of
invertable transformations, applied to base
simple distribution.

Density (change of variables theorem):

fθ(y/x) = pZ0(z0)
K∏

k=1

∣∣∣∣ det
dtk

dZk−1
(zk−1/x)

∣∣∣∣−1

Sampling:

Ỹ = tK ◦ ... ◦ t1(Z̃0) Z̃0 ∼ N(0, I )

Parameters of transformations (radial, affine)
are dependent on context X via neural
network.
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Overview of Methods – Mixture Density Network

Mixture Density Network (MDN) [Bishop, 1994] –
mixture of multivariate normal distributions
(components) and categorical distribution.

Density:

fθ(y/x) =
C∑
i=1

π
[i ]
x p

N
[i ]
x

(y)

Sampling:

Ỹ ∼ N(µ
[c̃]
x ,Σ

[c̃]
x ) c̃ ∼ Cat(π

[i ]
x )

Mixture parameters are
dependent on context X via
neural networks.
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Overview of Methods – Goodness-of-fit & Sampling
Maximum likelihood estimation (MLE) is equivalent to the minimization of
KL-divergence between the data generating p and model’s fθ distributions
(M-projection):

arg min
θ∈Θ

KL(p||fθ) ≈ arg max
θ∈Θ

1

n

n∑
i=1

log fθ(y (i)/x (i))

Under misspecified model class it underestimates the real support of distribution →
results in unrealistic sampling
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Overview of Methods – Goodness-of-fit & Sampling

Why do we need tractable density fθ(y/x) of estimated model for sampling? →
It allows to effectively compute goodness-of-fit (GoF) and do model selection.

We utilised GoF metrics, evaluated on test subset:

I Negative log-likelihood – unbounded, good values could correspond to visually
bad sample in high dimensions [Theis et al., 2015]

I Hellinger distance – bounded between 0 and 1, requires the knowledge of p

I Kullback-Leibler divergence – lower-bounded with 0, requires the knowledge of
p

I Jensen-Shannon divergence – symmetrical, bounded between 0 and log 2,
requires the knowledge of p



16/43

Outline

Intro
Interpretability
Research Gap
Contribution

Overview of Methods
Conditional Normalising Flow
Mixture Density Network
Goodness-of-fit & Sampling

Evaluation Benchmark
Aim & Dimensions
Benchmark Design
RFI Results
SAGE Results
Sensitive Attributes Use Case

Summary
References
Miscellaneous



17/43

Evaluation Benchmark – Aim & Dimensions

Aim of empirical study:

I check goodness-of-fit of estimators in different non-Gaussian scenarios

I evaluate, how goodness-of-fit contributes to feature importance validity

I study the influence of sensitive attributes

Dimensions of evaluation:
I Synthetic / Semi-synthetic / Real datasets with known causal structure models

(SCMs) or causal graphs (DAGs)
I size of data-generating causal model (# of edges / # of nodes)
I training subset size

I Density estimators (MDN, CNF, Conditional Gaussian distribution (CondGauss))

I Predictive models (Linear Regression, Random Forest, LightGBM Regressor) and
risks (MSE, MAE)
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Evaluation Benchmark – Benchmark Design

In principle, it is possible to evaluate FI of all triplets (target – feature of interest –
context) → exponential number of evaluations & intractable GT values

Ground-truth values of FIs
I RFI can be approximately found for Linear Regression & MSE risk with

multivariate Gaussian data (derivation in thesis)

I SAGE values are intractable even for simple models / risks
[Van den Broeck et al., 2021].

Monte-Carlo estimate, by sampling from true conditional distribution?

I expressiveness versus tractability issue [Vergari et al., 2020] → either too simple
causal SCM or intractable conditional distributions

I even approximate inference for SCMs – an open research question
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Evaluation Benchmark – Benchmark Design

We propose to use feature selection concepts:

I Strongly relevant features – always
conditionally dependent on target

I Weakly relevant features – can be independent
of target, conditionally on some context

I Irrelevant features – always independent of
target

Set of strongly relevant features = Markov
Blanket of target

Markov blanket (MB) of node

Set of parents, children and parents of children of a
node in causal DAG.

Xi

Target variable Xi (yellow), MB(Xi ) –
bold nodes, non-MB(Xi ) -
hatched/dotted nodes.
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Evaluation Benchmark – Benchmark Design

Thus, we have a quadratic number of evaluations, depending on the causal DAG
number of nodes.

For each possible target in causal graph we evaluate (1) RFIs and (2) SAGE of all
training features:

I (1) RFIs of weakly-/irrelevant features, conditioned on strongly relevant, should
be close to 0 (for correct predictor and correct sampler)

I (1) RFIs of strongly relevant features, conditioned on weakly-/irrelevant features,
should be non zero and higher, than ones in the first case (and depend on the
level of noise of structural assignments)

I (2) SAGE values should be zero for irrelevant features and non-zero for strongly
relevant (for correct predictor and correct sampler)
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Evaluation Benchmark – RFI Results / Synthetic datasets

Goodness-of-fit and conditioning size:

I variance of deep estimation increases with conditioning size

I deep estimators are always preferred for heavy tailed distributions

I no universally best estimator (no free lunch)

I sometimes – hard to notice superiority of estimator with NLL

Goodness-of-fit and train size:

I Conditional Gauss can outperform deep estimators in low-data regimes on
non-linear benchmarks
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Evaluation Benchmark – RFI Results / Synthetic datasets

RFI values of weakly relevant
features and train size:

I under correctly specified
model (LinearGaussianNoise
– LinearRegression) or for
flexible enough
LGBMRegressor RFI values
indeed decrease.

I values for a limited model
(RandomForestRegressor)
stays relatively the same
(see middle column)
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that y-axes are not shared across the figure.
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Evaluation Benchmark – RFI Results / Semi-synthetic dataset

RFI values of weakly relevant features on SynTReN generator:

I substantial difference between estimated values for CNF and MDN (GoF ranking:
CNF > MDN > Conditional Gaussian) → negative log-likelihood can be
misleading with low amount of data
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Box plots with RFIs for weakly relevant features on SynTReN datasets. x-axis – test risks (MAE, MSE), y-axis –
RFI values. Note, that y-axes are log-scaled and not shared across the figure.
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Evaluation Benchmark – RFI Results / Semi-synthetic dataset

Correlation between weakly
relevant RFIs and test loss
(SynTReN generator):

I high correlation between
test risk and RFIs of
weakly relevant features
→ lower predictive risk
means lower RFI

I also, a correlation
between values of test
NLL and RFIs of weakly
relevant features (for
Linear Regression)
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risk for SynTReN dataset. Rows – different density estimators,
columns – predictive models.
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Evaluation Benchmark – RFI Results / Real dataset
Deep estimators enhancements on Sachs-2005 (reduced batch size, fine-tuning, adding
log-transformation to CNF):
I GoF: fine-tuning – the best improvment of CNFs, batch size of 128 – MDNs
I RFI values: enhancements don’t substantially change estimates (difference only

with Conditional Gaussian, which overestimated the values)
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Box plots with RFIs for weakly (top) and strongly (bottom) features on Sachs-2005 datasets. x-axis – different
density estimators, y-axis – RFI values. Note, that y-axes are log-scaled and not shared across the figure.
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Evaluation Benchmark – SAGE Results / Real dataset
Main findings of SAGE estimation on Sachs-2005 dataset:

I deep estimators outperform Conditional Gaussian distribution

I estimated importances mirror the ground-truth connections of data-generating
DAG
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Evaluation Benchmark – SAGE Results / Real dataset
Main findings of SAGE estimation on Sachs-2005 dataset:
I SAGE values of weakly relevant features are sometimes below zero → support

underestimation increases with dimensionality
I MDNs were less numerically stable and produced extreme values
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Evaluation Benchmark – Sensitive Attributes Use Case

Census Income dataset from UCI library [Dua and Graff, 2017]

I Prediction task: predict whether income exceeds $50K/year based on census data.

I Features: 8 Categorical + 4 Continuous.

I Sensitive attributes: ’Age’, ’Race’, ’Sex ’.

I Predictive model – LightGBM classifier.

Aim – detect influence of sensitive features for two types of models:

I model with sensitive attributes

I 3 models, ignoring sensitive attributes

By comparing PFI and RFI (conditionally on sensitive features G), we can
reason about direct / indirect influence of sensitive information for both
models.
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Evaluation Benchmark – Sensitive Attributes Use Case

Discovered issue: ’Capital Gain’ is a
mixed-type variable p(x = 0.0) > 0:

I suspiciously high test log-likelihood

I CFI and RFI are higher, than PFI →
empirical distribution substantially
differs from estimated

Ultimately, we used a 50-bins discretizer
and treated this feature as categorical.
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Evaluation Benchmark – Sensitive Attributes Use Case

Notable findings:

I PFIs of sensitive features were close to zero, when used as training features (max
2% for ’Age’).
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Evaluation Benchmark – Sensitive Attributes Use Case

Other findings:

I after excluding sensitive features, test accuracy dropped maximally on 0.8%

I feature importances were almost the same between two types of classifiers

I negligible differences between PFI and RFI for the majority of features

Main conclusion: we do not observe any leakage of sensitive attributes via other
features if we include or even exclude them from training.
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Summary

I Deep density estimators should be preferred for heavy-tailed / multimodal /
heteroscedastic distributions → they produce more realistic FI values

I CNFs are more numerically stable than MDNs (especially for heavy-tailed
distributions)

I SAGE estimates could be wrongly negative, as the underestimation of real support
increases with dimensionality

I One wants to use a sampler with the best GoF. But often, there is no need to
spend too much computational power to fine-tune density estimators → estimated
FIs are roughly similar

I Mixed-variable density estimation is an open issue, which causes incorrect FIs



34/43

Outline

Intro
Interpretability
Research Gap
Contribution

Overview of Methods
Conditional Normalising Flow
Mixture Density Network
Goodness-of-fit & Sampling

Evaluation Benchmark
Aim & Dimensions
Benchmark Design
RFI Results
SAGE Results
Sensitive Attributes Use Case

Summary
References
Miscellaneous



35/43

References I

Aas, K., Jullum, M., and Løland, A. (2019).

Explaining individual predictions when features are dependent: More accurate approximations to shapley values.
arXiv preprint arXiv:1903.10464.

Bishop, C. M. (1994).

Mixture density networks.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015).

Weight uncertainty in neural network.
In International Conference on Machine Learning, pages 1613–1622. PMLR.

Covert, I., Lundberg, S., and Lee, S.-I. (2020).

Understanding global feature contributions with additive importance measures.

Dua, D. and Graff, C. (2017).

UCI machine learning repository.

Frye, C., de Mijolla, D., Begley, T., Cowton, L., Stanley, M., and Feige, I. (2020).

Shapley explainability on the data manifold.
arXiv preprint arXiv:2006.01272.

König, G., Molnar, C., Bischl, B., and Grosse-Wentrup, M. (2020).

Relative feature importance.
arXiv preprint arXiv:2007.08283.

Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien, S. (2019).

Gradient-based neural dag learning.
arXiv preprint arXiv:1906.02226.



36/43

References II

Mase, M., Owen, A. B., and Seiler, B. (2019).

Explaining black box decisions by shapley cohort refinement.
arXiv preprint arXiv:1911.00467.

Mirza, M. and Osindero, S. (2014).

Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784.

Rothfuss, J., Ferreira, F., Boehm, S., Walther, S., Ulrich, M., Asfour, T., and Krause, A. (2019a).

Noise regularization for conditional density estimation.
arXiv preprint arXiv:1907.08982.

Rothfuss, J., Ferreira, F., Walther, S., and Ulrich, M. (2019b).

Conditional density estimation with neural networks: Best practices and benchmarks.
arXiv preprint arXiv:1903.00954.

Sohn, K., Lee, H., and Yan, X. (2015).

Learning structured output representation using deep conditional generative models.
Advances in neural information processing systems, 28:3483–3491.

Theis, L., Oord, A. v. d., and Bethge, M. (2015).

A note on the evaluation of generative models.
arXiv preprint arXiv:1511.01844.

Trippe, B. L. and Turner, R. E. (2018).

Conditional density estimation with bayesian normalising flows.
arXiv preprint arXiv:1802.04908.



37/43

References III

Van den Broeck, G., Lykov, A., Schleich, M., and Suciu, D. (2021).

On the tractability of shap explanations.

Vergari, A., Choi, Y., Peharz, R., and Van den Broeck, G. (2020).

Probabilistic circuits: Representations, inference, learning and applications.
In Tutorial at the The 34th AAAI Conference on Artificial Intelligence.

Winkler, C., Worrall, D., Hoogeboom, E., and Welling, M. (2019).

Learning likelihoods with conditional normalizing flows.
arXiv preprint arXiv:1912.00042.



38/43

Outline

Intro
Interpretability
Research Gap
Contribution

Overview of Methods
Conditional Normalising Flow
Mixture Density Network
Goodness-of-fit & Sampling

Evaluation Benchmark
Aim & Dimensions
Benchmark Design
RFI Results
SAGE Results
Sensitive Attributes Use Case

Summary
References
Miscellaneous



39/43

Miscellaneous – Deep Conditional Density Estimators
Comparison of SOTA deep conditional density estimators

Parametric model
Tractable
density

Exact
Sampling

Tractable
CDF

Tractable
quantile
function

Latent variable NNs (cVAE [Sohn et al., 2015],
cGAN [Mirza and Osindero, 2014])

– + – –

Bayesian NNs [Blundell et al., 2015] – + – –

Mixture Density Networks (MDNs)
[Bishop, 1994]

+ + + –

Conditional Normalising Flow (CNFs)
[Trippe and Turner, 2018, Winkler et al., 2019]

+ + + +

Additional advantages of MDNs and CNFs:

I few interpretable parameters, which control the complexity of distribution

I barely tuning needed due to noise regularisation [Rothfuss et al., 2019a]

I evaluated for tabular UCI benchmark datasets [Rothfuss et al., 2019a]



40/43

Miscellaneous – Noise Regularisation
In the context of CDE: it is unclear what kind of inductive bias to choose?

Possible solutions:
I [Trippe and Turner, 2018] – putting priors on latent features and NN weights +

variational inference → need to know a reasonable prior
I [Rothfuss et al., 2019b] – noise regularisation (adding Gaussian noise to

dependent and context variables)
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Miscellaneous – Datasets

Generators / datasets, used for causal structure learning [Lachapelle et al., 2019] also
fit to the needs of RFI/SAGE evaluation:

1. 4 synthetic SCM generators: linear with additive Gaussian noise, non-linear
with additive Gaussian noise, post non-linear with additive Laplace noise and
multiplicative with Half-Normal noise.

2. SynTReN generator produces simulated gene expression data, that approximates
experimental data.

3. Sachs-2005 – real dataset, measures the expression level of different proteins and
phospholipids in human cells.
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Miscellaneous – Synthetic SCM dataset generators

1. LinearGaussianNoise.

Xj/PaXj
∼ wT

j PaXj
+ 0.2N(0, σ2

j ) σ2
j ∼ U[1, 2], wij ∼ U[0, 1]

2. RandomGPGaussianNoise.

Xj/PaXj
∼ fj(PaXj

) + 0.2N(0, σ2
j ); fj ∼ GP(0, k(X ,X ′)) σ2

j ∼ U[1, 2]

3. PostNonLinearLaplace.

Xj/PaXj
∼ σ(fj(PaXj

) + Laplace(0, lj)) fj ∼ GP(0, k(X ,X ′))

4. PostNonLinearMultiplicativeHalfNormal.

Xj/PaXj
∼ exp

(
log
(∑

PaXj

)
+ |N(0, σ2

j )|
)

σ2
j ∼ U[0, 1]
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Miscellaneous – Synthetic SCM dataset generators

X0
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X2

X3

X4

LinearGaussianNoise

PostNonLinearLaplace

RandomGPGaussianNoise

PostNonLinearMultiplicativeHalfNormal
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